1887

Abstract

The taxonomic characteristics of two bacterial strains, RB-8 and RB-9, isolated from hydrocarbon-degrading enrichment cultures obtained from Antarctic coastal marine environments (Rod Bay, Ross Sea), were determined. These bacteria were psychrophilic, aerobic and Gram-negative with polar flagella. Growth was not observed in the absence of NaCl, occurred only at concentrations of Na above 20 mM and was optimal at an NaCl concentration of 3–5 % (w/v). The major cellular fatty acids were monounsaturated straight-chain fatty acids. The strains were able to synthesize the polyunsaturated fatty acid eicosapentaenoic acid (20 : 53) at low temperatures. The DNA G+C contents were 41–42 mol%. The strains formed a distinct phyletic line within the -, with less than 89·6 % sequence identity to their closest relatives within the with validly published names. Both isolates exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is typical of marine hydrocarbonoclastic micro-organisms such as , and . On the basis of ecophysiological properties, G+C content, 16S rRNA gene sequences and fatty acid composition, a novel genus and species within the - are proposed, gen. nov., sp. nov.; strain RB-8 (=DSM 14852=LMG 21398) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02366-0
2003-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530779.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02366-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  3. Bano N., Hollibaugh J. T. 2002; Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518 [CrossRef]
    [Google Scholar]
  4. Baumann P., Baumann L. 1981; The marine Gram-negative eubacteria: genera Photobacterium , Beneckea , Alteromonas , Pseudomonas and Alcaligenes . In The Prokaryotes pp 1302–1330Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer Verlag;
    [Google Scholar]
  5. Bowditch R. D., Baumann L., Baumann P. 1984; Description of Oceanospirillum kriegii sp. nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr Microbiol 10:221–230 [CrossRef]
    [Google Scholar]
  6. Button D. K., Robertson B. R., Lepp P. W., Schmidt T. M. 1998; A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl Environ Microbiol 64:4467–4476
    [Google Scholar]
  7. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. 1995; Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  9. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J. C. 1992; Marinobacter hydrocarbonoclasticus gen. nov. sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  10. Golyshin P. N., Chernikova T. N., Abraham W.-R., Lünsdorf H., Timmis K. N., Yakimov M. M. 2002; Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911 [CrossRef]
    [Google Scholar]
  11. Golyshina O. V., Pivovarova T. A., Karavaiko G. I.7 other authors 2000; Ferroplasma acidiphilum gen. nov., sp. nov. an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea . Int J Syst Evol Microbiol 50997–1006 [CrossRef]
    [Google Scholar]
  12. Harayama S., Kishira H., Kasai Y., Shutsubo K. 1999; Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70
    [Google Scholar]
  13. Kaneda T. 1991; Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302
    [Google Scholar]
  14. MacCormack W. P., Fraile E. R. 1997; Characterization of a hydrocarbon degrading psychrotrophic Antarctic bacterium. Antarctic Sci 9:150–155
    [Google Scholar]
  15. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project. Nucleic Acids Res 25:109–111 [CrossRef]
    [Google Scholar]
  16. Maidak B. L., Cole J. R., Lilburn T. G.7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  17. Margesin R., Schinner F. 1999; Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74:381–389 [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  20. Rambaut A. 1996 Se-Al (Sequence Alignment Editor) version 1.0 α 1. Distributed by the author Department of Zoology, University of Oxford, UK; http://evolve.zoo.ox.ac.uk/software/Se-Al/main.html
    [Google Scholar]
  21. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226
    [Google Scholar]
  22. Rosenberg E., Legmann R., Kushmaro A., Taube R., Adler E., Ron E. Z. 1992; Petroleum bioremediation – a multiphase problem. Biodegradation 3:337–350 [CrossRef]
    [Google Scholar]
  23. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:767–779 [CrossRef]
    [Google Scholar]
  24. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T. 2002; Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum , description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52:739–747 [CrossRef]
    [Google Scholar]
  25. Shizuya H., Birren B., Kim U.-J., Mancino V., Slepak T., Tachiiri Y., Simon M. 1992; Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797 [CrossRef]
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp 409–443Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Smits T. H. M., Rothlisberger M., Witholt B., van Beilen J. B. 1999; Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–317 [CrossRef]
    [Google Scholar]
  28. Smits T. H. M., Balada S., Witholt B., van Beilen J. B. 2002; Functional analysis of alkane hydroxylases from Gram-negative and Gram-positive bacteria. J Bacteriol 184:1733–1742 [CrossRef]
    [Google Scholar]
  29. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  30. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  31. Woese C. R., Achenbach L., Rouviere P., Mandeleo L. 1991; Archaeal phylogeny. Reexamination of the phylogenetic position of Archeoglobus fulgidis in light of certain composition-induced artifacts. Syst Appl Microbiol 14:364–371 [CrossRef]
    [Google Scholar]
  32. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02366-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02366-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error