1887

Abstract

The phylogenetic relationships of all known species of the genus were investigated by using the sequence of , a gene that encodes the B-subunit of DNA gyrase. Nucleotide sequences of were determined from 53 strains, including some new isolates, which were also characterized by analysis of the 16S rDNA variable regions. The results support the recognition of the family , as distinct from and other enteric bacteria. This phylogenetic marker revealed strain groupings that are consistent with the taxonomic organization of all species described to date. In particular, results agreed with 16S rDNA analysis; moreover, the former showed a higher capacity to differentiate between species. The present analysis was useful for the elucidation of reported discrepancies between different DNA–DNA hybridization sets. Additionally, due to the sequence diversity found at the intraspecies level, is proposed as a useful target for simultaneous identification of species and strains. In conclusion, the gene has proved to be an excellent molecular chronometer for phylogenetic studies of the genus .

Keyword(s): HG, homology group
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02443-0
2003-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530875.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02443-0&mimeType=html&fmt=ahah

References

  1. Abbott S. L., Seli L. S., Catino M. Jr, Hartley M. A., Janda J. M. 1998; Misidentification of unusual Aeromonas species as members of the genus Vibrio : a continuing problem. J Clin Microbiol 36:1103–1104
    [Google Scholar]
  2. Ali A., Carnahan A. M., Altwegg M., Lüthy-Hottenstein J., Joseph S. W. 1996; Aeromonas bestiarum sp. nov. (formerly genomospecies DNA group 2 A. hydrophila ), a new species isolated from non-human sources. Med Microbiol Lett 5:156–165
    [Google Scholar]
  3. Ash C., Martínez-Murcia A. J., Collins M. D. 1993a; Identification of Aeromonas schubertii and Aeromonas jandaei by using a polymerase chain reaction-probe test. FEMS Microbiol Lett 108:151–156 [CrossRef]
    [Google Scholar]
  4. Ash C., Martínez-Murcia A. J., Collins M. D. 1993b; Molecular identification of Aeromonas sobria by using a polymerase chain reaction-probe test. Med Microbiol Lett 2:80–86
    [Google Scholar]
  5. Borrell N., Acinas S. G., Figueras M. J., Martínez-Murcia A. J. 1997; Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. J Clin Microbiol 35:1671–1674
    [Google Scholar]
  6. Carnahan A. M. 1993; Aeromonas taxonomy: a sea of change. 4th International Workshop on Aeromonas / Plesiomonas , Atlanta, GA. Med Microbiol Lett 2:206–211
    [Google Scholar]
  7. Carnahan A. M., Chakraborty T., Fanning G. R., Verma D., Ali A., Janda J. M., Joseph S. W. 1991; Aeromonas trota sp. nov., an ampicilin-susceptible species isolated from clinical specimens. J Clin Microbiol 29:1206–1210
    [Google Scholar]
  8. Collins M. D., Martinez-Murcia A. J., Cai J. 1993; Aeromonas enteropelogenes and Aeromonas ichthiosmia are identical to Aeromonas trota and Aeromonas veronii , respectively, as revealed by small-subunit rRNA sequence analysis. Int J Syst Bacteriol 43:855–856 [CrossRef]
    [Google Scholar]
  9. Colwell R. R., MacDonell M. T., O'Brien M., De Ley J. 1986; Proposal to recognize the family Aeromonadaceae fam. nov. Int J Syst Bacteriol 36:473–477 [CrossRef]
    [Google Scholar]
  10. Dorsch M., Ashbolt N. J., Cox P. T., Goodman A. E. 1994; Rapid identification of Aeromonas species using 16S rDNA targeted oligonucleotide primers: a molecular approach based on screening of environmental isolates. J Appl Bacteriol 77:722–726 [CrossRef]
    [Google Scholar]
  11. Esteve C., Gutiérrez M. C., Ventosa A. 1995a; DNA relatedness among Aeromonas allosaccharophila strains and DNA hybridization groups of the genus Aeromonas . Int J Syst Bacteriol 45:390–391 [CrossRef]
    [Google Scholar]
  12. Esteve C., Gutiérrez M. C., Ventosa A. 1995b; Aeromonas encheleia sp. nov., isolated from European eels. Int J Syst Bacteriol 45:462–466 [CrossRef]
    [Google Scholar]
  13. Figueras M. J., Soler L., Chacón M. R., Guarro J., Martínez-Murcia A. J. 2000; Extended method for discrimination of Aeromonas spp. by 16S rDNA RFLP analysis. Int J Syst Evol Microbiol 50:2069–2073 [CrossRef]
    [Google Scholar]
  14. Hänninen M.-L. 1994; Phenotypic characteristics of the three hybridization groups of Aeromonas hydrophila complex isolated from different sources. J Appl Bacteriol 76:455–462 [CrossRef]
    [Google Scholar]
  15. Hickman-Brenner F. W., MacDonald K. L., Steigerwalt A. G., Fanning G. R., Brenner D. J., Farmer J. J. III 1987; Aeromonas veronii , a new ornithine decarboxlase-positive species that may cause diarrhea. J Clin Microbiol 25:900–906
    [Google Scholar]
  16. Hickman-Brenner F. W., Fanning G. R., Arduino M. J., Brenner D. J., Farmer J. J. III 1988; Aeromonas schubertii , a new mannitol-negative species found in human clinical specimens. J Clin Microbiol 26:1561–1564
    [Google Scholar]
  17. Huang W. M. 1996; Bacterial diversity based on type II DNA topoisomerase genes. Annu Rev Genet 30:79–107 [CrossRef]
    [Google Scholar]
  18. Huys G., Altwegg M., Hänninen M.-L.7 other authors 1996a; Genotypic and chemotaxonomic description of two subgroups in the species Aeromonas eucrenophila and their affiliation to A. encheleia and Aeromonas DNA hybridization group 11. Syst Appl Microbiol 19:616–623 [CrossRef]
    [Google Scholar]
  19. Huys G., Coopman R., Janssen P., Kersters K. 1996b; High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting. Int J Syst Bacteriol 46:572–580 [CrossRef]
    [Google Scholar]
  20. Huys G., Kämpfer P., Altwegg M., Coopman R., Janssen P., Gillis M., Kersters K. 1997a; Inclusion of Aeromonas DNA hybridization group 11 in Aeromonas encheleia and extended descriptions of the species Aeromonas eucrenophila and A. encheleia . Int J Syst Bacteriol 47:1157–1164 [CrossRef]
    [Google Scholar]
  21. Huys G., Kämpfer P., Altwegg M.7 other authors 1997b; Aeromonas popoffii sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs. Int J Syst Bacteriol 47:1165–1171 [CrossRef]
    [Google Scholar]
  22. Huys G., Kämpfer P., Swings J. 2001; New DNA-DNA hybridization and phenotypic data on the species Aeromonas ichthiosmia and Aeromonas allosaccharophila : A. ichthiosmia Schubert et al . 1990 is a later synonym of A. veronii Hickman-Brenner et al . 1987. Syst Appl Microbiol 24:177–182 [CrossRef]
    [Google Scholar]
  23. Janda J. M. 1991; Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas . Clin Microbiol Rev 4:397–410
    [Google Scholar]
  24. Janda J. M., Abbott S. L. 1998; Evolving concepts regarding the genus Aeromonas : an expanding panorama of species, disease presentations, and unanswered questions. Clin Infect Dis 27:332–344 [CrossRef]
    [Google Scholar]
  25. Joseph S. W., Carnahan A. M. 2000; Update on the genus Aeromonas . ASM News 66:218–223
    [Google Scholar]
  26. Kasai H., Ezaki T., Harayama S. 2000; Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J Clin Microbiol 38:301–308
    [Google Scholar]
  27. Khan A. A., Cerniglia C. E. 1997; Rapid and sensitive method for the detection of Aeromonas caviae and Aeromonas trota by polymerase chain reaction. Lett Appl Microbiol 24:233–239 [CrossRef]
    [Google Scholar]
  28. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  29. Kuijper E. J., Steigerwalt A. G., Schoenmakers B. S. C. I. M., Peeters M. F., Zanen H. C., Brenner D. J. 1989; Phenotypic characterization and DNA relatedness in human fecal isolates of Aeromonas spp. J Clin Microbiol 27:132–138
    [Google Scholar]
  30. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  31. Martínez-Murcia A. J. 1999; Phylogenetic positions of Aeromonas encheleia , Aeromonas popoffii , Aeromonas DNA hybridization Group 11 and Aeromonas Group 501. Int J Syst Bacteriol 49:1403–1408 [CrossRef]
    [Google Scholar]
  32. Martinez-Murcia A. J., Benlloch S., Collins M. D. 1992a; Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol 42:412–421 [CrossRef]
    [Google Scholar]
  33. Martínez-Murcia A. J., Esteve C., Garay E., Collins M. D. 1992b; Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas . FEMS Microbiol Lett 91:199–205 [CrossRef]
    [Google Scholar]
  34. Martínez-Murcia A. J., Antón A. I., Rodríguez-Valera F. 1999; Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli . Int J Syst Bacteriol 49:601–610 [CrossRef]
    [Google Scholar]
  35. Nair G. B., Holmes B. 1999; International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Vibrionaceae . Minutes of the closed meeting19 May 1998Atlanta, GA, USA Int J Syst Bacteriol 491945–1947 [CrossRef]
    [Google Scholar]
  36. Pidiyar V., Kaznowski A., Badri Narayan N., Patole M., Shouche Y. S. 2002; Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus . Int J Syst Evol Microbiol 52:1723–1728 [CrossRef]
    [Google Scholar]
  37. Popoff M. 1984; Genus III. Aeromonas Kluyver and Van Niel 1936, 398AL. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 545–548Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  38. Popoff M. Y., Coynault C., Kiredjian M., Lemelin M. 1981; Polynucleotide sequence relatedness among motile Aeromonas species. Curr Microbiol 5:109–114 [CrossRef]
    [Google Scholar]
  39. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  40. Schubert R. H. W., Hegazi M. 1988; Aeromonas eucrenophila species nova, Aeromonas caviae a later and illegitimate synonym of Aeromonas punctata . Zentbl Bakteriol Mikrobiol Hyg 1 Abt Orig A. 26834–39
  41. Schubert R. H. W., Hegazi M., Wahlig W. 1990a; Aeromonas enteropelogenes species nova. Hyg Med 15:471–472
    [Google Scholar]
  42. Schubert R. H. W., Hegazi M., Wahlig W. 1990b; Aeromonas ichthiosmia species nova. Hyg Med 15:477–479
    [Google Scholar]
  43. Singh D. V., Sanyal S. C. 1999; Virulence patterns of Aeromonas eucrenophila isolated from water and infected fish. J Diarrhoeal Dis Res 17:37–42
    [Google Scholar]
  44. Sneath P. H. A. 1993; Evidence from Aeromonas for genetic crossing-over in ribosomal sequences. Int J Syst Bacteriol 43:626–629 [CrossRef]
    [Google Scholar]
  45. Stackebrandt E., Frederiksen W., Garrity G. M.10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  46. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  47. Venkateswaran K., Dohmoto N., Harayama S. 1998; Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol 64:681–687
    [Google Scholar]
  48. Watanabe K., Nelson J., Harayama S., Kasai H. 2001; ICB database: the gyrB database for identification and classification of bacteria. Nucleic Acid Res 29:344–345 [CrossRef]
    [Google Scholar]
  49. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  50. Yamamoto S., Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511 [CrossRef]
    [Google Scholar]
  51. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB , rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [CrossRef]
    [Google Scholar]
  52. Yamamoto S., Bouvet P. J. M., Harayama S. 1999; Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95 [CrossRef]
    [Google Scholar]
  53. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. 2000; Phylogeny of the genus Pseudomonas : intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02443-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02443-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error