1887

Abstract

A taxonomic study was made of the genus . The species in the genus were divided into three subclusters by phylogenetic analysis based on the 16S rRNA gene sequences. The three subclusters were the subcluster (comprising , , , , , , , and ), the subcluster (, , and ) and the subcluster (). Phylogenetic trees based on the sequences of the 16S–23S rRNA gene intergenic spacer region, the gene or the gene indicated a good correlation with the phylogenetic tree based on 16S rRNA gene sequences. The species in the subcluster were morphologically distinguishable from the species in the subcluster and as species in the subcluster had rod-shaped cells. In addition, the four species in the subcluster needed an electron acceptor for the dissimilation of -glucose and produced acetic acid from -glucose rather than ethanol. On the basis of evidence presented in this study, it is proposed that the four species in the subcluster, , , and , should be transferred to a novel genus, gen. nov., as s comb. nov. (type strain D-24=LMG 22556=CCUG 49949), comb. nov. (type strain FS-1=DSM 13613=JCM 12225), comb. nov. (type strain IFO 3516=DSM 20349=JCM 1119=NRIC 1058) and comb. nov. (type strain LC-51=DSM 15468=CECT 5759). The type species of the genus is gen. nov., comb. nov.. No significant physiological and biochemical differences were found between the species in the subcluster and in the present study and thus remains as a member of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65609-0
2008-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2195.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65609-0&mimeType=html&fmt=ahah

References

  1. Antunes, A., Rainey, F. A., Nobre, M. F., Schumann, P., Ferreira, A. M., Ramos, A., Santos, H. & da Costa, M. S.(2002).Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 52, 647–655. [Google Scholar]
  2. Björkroth, K. J., Geisen, R., Schillinger, U., Weiss, N., De Vos, P., Holzapfel, W. H., Korkeala, H. J. & Vandamme, P.(2000). Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl Environ Microbiol 66, 3764–3772.[CrossRef] [Google Scholar]
  3. Björkroth, K. J., Geisen, R., Schillinger, U., Weiss, N., De Vos, P., Holzapfel, W. H., Korkeala, H. J. & Vandamme, P.(2001).Leuconostoc gasicomitatum sp. nov. In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 79. Int J Syst Evol Microbiol 51, 263–265.[CrossRef] [Google Scholar]
  4. Brosius, J., Dull, T. J., Sleeter, D. D. & Noller, H. F.(1981). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef] [Google Scholar]
  5. Cavalli-Sforza, L. L. & Edwards, A. W. F.(1967). Phylogenetic analysis models and estimation procedures. Am J Hum Genet 19, 233–257. [Google Scholar]
  6. Chambel, L., Chelo, I. M., Zé, Zé, L., Pedro, L. G., Santos, M. A. & Tenreiro, R.(2006).Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int J Syst Evol Microbiol 56, 1375–1381.[CrossRef] [Google Scholar]
  7. Chelo, I. M., Zé-Zé, L. & Tenreiro, R.(2007). Congruence of evolutionary relationships inside the Leuconostoc−Oenococcus−Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 57, 276–286.[CrossRef] [Google Scholar]
  8. Collins, M. D., Rodrigues, U. M., Ash, C., Aguirre, M., Farrow, J. A. E., Martinez-Murcia, A., Philips, B. A., Williams, A. M. & Wallbanks, S.(1991). Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77, 5–12.[CrossRef] [Google Scholar]
  9. Condon, S.(1987). Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46, 269–280.[CrossRef] [Google Scholar]
  10. De Bruyne, K., Schillinger, U., Caroline, L., Böhringer, B., Cleenwerck, I., Vancanneeyt, M., De Vuyst, L., Franz, C. M. A. P. & Vandamme, P.(2007).Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57, 2952–2959.[CrossRef] [Google Scholar]
  11. Dellaglio, F., Dicks, L. M. T. & Torriani, S.(1995). The genus Leuconostoc. In Lactic Acid Bacteria, vol. 2. The Genera of Lactic Acid Bacteria, pp. 235−238. Edited by B. J. B. Wood & W. H. Holzapfel. Blackie Academic & Professional.
  12. Dellaglio, F., Felis, G. E., Castioni, A., Torriani, S. & Germond, J. E.(2005).Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. Int J Syst Evol Microbiol 55, 401–404.[CrossRef] [Google Scholar]
  13. DeMoss, R. D., Bard, R. C. & Gunsalus, I. C.(1951). The mechanism of heterolactic fermentation: a new route of ethanol fermentation. J Bacteriol 62, 499–511. [Google Scholar]
  14. Eisen, J. A.(1995). The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41, 1105–1123. [Google Scholar]
  15. Endo, A. & Okada, S.(2005).Lactobacillus satsumensis sp. nov., isolated from mashes of shochu, a traditional Japanese distilled spirit made from fermented rice and other starchy materials. Int J Syst Evol Microbiol 55, 83–85.[CrossRef] [Google Scholar]
  16. Farrow, J. A. E., Facklam, R. R. & Collins, M. D.(1989). Nucleic acid homologies of some vancomycin-resistant leuconostocs and description of Leuconostoc citreum sp. nov. and Leuconostoc pseudomesenteroides sp. nov. Int J Syst Bacteriol 39, 279–283.[CrossRef] [Google Scholar]
  17. Felis, G. E., Dellaglio, F., Mizzi, L. & Torriani, S.(2001). Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int J Syst Evol Microbiol 51, 2113–2117.[CrossRef] [Google Scholar]
  18. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  19. Felsenstein, J.(2005).phylip (Phylogeny Inference Package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  20. Garvie, E. I.(1960). The genus Leuconostoc and its nomenclature. J Dairy Res 27, 283–292.[CrossRef] [Google Scholar]
  21. Higashiguchi, D. T., Husseneder, C., Grace, J. K. & Berestecky, J. M.(2006).Pilibacter termitis gen. nov., sp. nov., a lactic acid bacterium from the hindgut of the Formosan subterranean termite (Coptotermes formosanus). Int J Syst Evol Microbiol 56, 15–20.[CrossRef] [Google Scholar]
  22. Jian, W. & Dong, X.(2002). Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 52, 809–812.[CrossRef] [Google Scholar]
  23. Johnson, M. K. & McCleskey, C. S.(1957). Studies on the aerobic carbohydrate metabolism of Leuconostoc mesenteroides. J Bacteriol 74, 22–25. [Google Scholar]
  24. Keenan, T. W.(1968). Production of acetic acid and other volatile compounds by Leuconostoc citrovorum and Leuconostoc dextranicum. Appl Microbiol 16, 1881–1885. [Google Scholar]
  25. Kim, J., Chun, J. & Han, H. U.(2000).Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50, 1915–1919. [Google Scholar]
  26. Kim, B., Lee, J., Jang, J., Kim, J. & Han, H.(2003).Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 53, 1123–1126.[CrossRef] [Google Scholar]
  27. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  28. Kluge, A. G. & Farris, F. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  29. Kodama, R.(1956). Studies on the nutrition of lactic acid bacteria. Part IV. Lactobacillus fructosus nov. sp., a new species of lactic acid bacteria. J Agric Chem Soc Jpn 30, 705–708 (in Japanese). [Google Scholar]
  30. Leisner, J. J., Vancanneyt, M., Goris, J., Christensen, H. & Rusul, G.(2000). Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid bacterium isolated from chili bo, a Malaysian food ingredient. Int J Syst Evol Microbiol 50, 19–24.[CrossRef] [Google Scholar]
  31. Leisner, J. J., Vancanneyt, M., van der Meulen, R., Lefebvre, K., Engelbeen, K., Hoste, B., Laursen, B. G., Bay, L., Rusul, G. & other authors(2005).Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int J Syst Evol Microbiol 55, 1267–1270.[CrossRef] [Google Scholar]
  32. Lucey, C. A. & Condon, S.(1986). Active role of oxygen and NADH oxidase in growth and energy metabolism of Leuconostoc. J Gen Microbiol 132, 1789–1796. [Google Scholar]
  33. Martinez-Murcia, A. J. & Collins, M. D.(1991). A phylogenetic analysis of an atypical leuconostoc: description of Leuconostoc fallax sp. nov. FEMS Microbiol Lett 82, 55–60.[CrossRef] [Google Scholar]
  34. Martinez-Murcia, A. J. & Collins, M. D.(1992).Leuconostoc fallax sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 40. Int J Syst Bacteriol 42, 191–192.[CrossRef] [Google Scholar]
  35. Morse, R., Collins, M. D., O'Hanlon, K., Wallbanks, S. & Richardson, P. T.(1996). Analysis of the β′ subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos) is a techytelic (fast-evolving) bacterium. Int J Syst Bacteriol 46, 1004–1009.[CrossRef] [Google Scholar]
  36. Naser, S. M., Thompson, F. L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M. & Swings, J.(2005). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151, 2141–2150.[CrossRef] [Google Scholar]
  37. Naser, S. M., Vancanneyt, M., Hoste, B., Snauwaert, C. & Swings, J.(2006).Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000. Int J Syst Evol Microbiol 56, 1681–1683.[CrossRef] [Google Scholar]
  38. Rachman, C. N., Kabadjova, H., Prévost, H. & Dousset, X.(2003). Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S-23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide. J Appl Microbiol 95, 1207–1216.[CrossRef] [Google Scholar]
  39. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  40. Sakamoto, M. & Komagata, K.(1996). Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 82, 210–216.[CrossRef] [Google Scholar]
  41. Shaw, B. G. & Harding, C. D.(1989).Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int J Syst Bacteriol 39, 217–223.[CrossRef] [Google Scholar]
  42. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors)(1980). Approved lists of bacterial names. Int J Syst Bacteriol 30, 225–420.[CrossRef] [Google Scholar]
  43. Sneath, P. H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G. (editors)(1986).Bergey's Manual of Systematic Bacteriology, vol. 2, Baltimore: Williams & Wilkins.
  44. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  45. Torriani, S., Felis, G. E. & Dellaglio, F.(2001). Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR with recA gene-derived primers. Appl Environ Microbiol 67, 3450–3454.[CrossRef] [Google Scholar]
  46. Van de Peer, Y., De Rijk, P., Wuyts, J., Winkelmans, T. & De Watcher, R.(2000). The European small subunit ribosomal RNA database. Nucleic Acids Res 28, 175–176.[CrossRef] [Google Scholar]
  47. Van Tieghem, P.(1878). Sur la gomme du sucerie (Leuconostoc mesenteroides). Ann Sci Nat Bot 7, 180–203. [Google Scholar]
  48. Vancanneyt, M., Zamfir, M., de Wachter, M., Cleenwerck, I., Hoste, B., Rossi, F., Dellaglio, F., de Vuyst, L. & Swings, J.(2006). Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis. Int J Syst Evol Microbiol 56, 213–216.[CrossRef] [Google Scholar]
  49. Zavaleta, A. I., Martinez-Murcia, A. J. & Rodriguez-Valera, F.(1996). 16S-23S rDNA intergenic sequences indicate that Leuconostoc oenos is phylogenetically homogeneous. Microbiology 142, 2105–2114.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65609-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65609-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2195 - 2205

Phylogenetic relationship of the genera , gen. nov. and related taxa based on the 16S rRNA gene sequences using the maximum-likelihood method.

Phylogenetic relationship of the genera , gen. nov. and related taxa based on the 16S rRNA gene sequences using the maximum-parsimony method.

Growth curves for species in the genera and gen. nov. in GYP broth, FYP broth and FGYP broth.

Combined file [ PDF] 100 KB



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error