1887

Abstract

The Mitis group of the genus currently comprises 20 species with validly published names, including the pathogen . They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and and analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that is a later synonym of . The recently described strains of the species includes one previously referred to as ‘ biovar 2’. Together with and form subclusters within a coherent phylogenetic clade. We propose that the species consists of three subspecies: subsp. subsp. nov subsp. comb. nov., and subsp. comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001433
2016-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4803.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001433&mimeType=html&fmt=ahah

References

  1. Bek-Thomsen M., Poulsen K., Kilian M. 2012; Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species. MBio 3:e00303-12 [View Article][PubMed]
    [Google Scholar]
  2. Bishop C. J., Aanensen D. M., Jordan G. E., Kilian M., Hanage W. P., Spratt B. G. 2009; Assigning strains to bacterial species via the internet. BMC Biol 7:3 [View Article][PubMed]
    [Google Scholar]
  3. Bridge P. D., Sneath P. H. A. 1982; Streptococcus gallinarum sp. nov. and Streptococcus oralis sp. nov. Int J Syst Bacteriol 32:410–415 [View Article]
    [Google Scholar]
  4. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L. 2009; blast+: architecture and applications. BMC Bioinformatics 10:421 [View Article][PubMed]
    [Google Scholar]
  5. Camelo-Castillo A., Benítez-Páez A., Belda-Ferre P., Cabrera-Rubio R., Mira A. 2014; Streptococcus dentisani sp. nov., a novel member of the mitis group. Int J Syst Evol Microbiol 64:60–65 [View Article][PubMed]
    [Google Scholar]
  6. Carlsson J. 1967; Presence of various types of non-haemolytic streptococci in dental plaque and in other sites of the oral cavity in man. Odontol Revy 18:55–74[PubMed]
    [Google Scholar]
  7. Chi F., Nolte O., Bergmann C., Ip M., Hakenbeck R. 2007; Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in Streptococcus pneumoniae, S. mitis and S. oralis. Int J Med Microbiol 297:503–512 [View Article][PubMed]
    [Google Scholar]
  8. Denapaite D., Rieger M., Köndgen S., Brückner R., Ochigava I., Kappeler P., Mätz-Rensing K., Leendertz F., Hakenbeck R. 2016; Highly variable Streptococcus oralis strains are common among viridans Streptococci isolated from primates. mSphere 1:e00041-15 [View Article][PubMed]
    [Google Scholar]
  9. Doern C. D., Burnham C.-A. D. 2010; It's not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol 48:3829–3835 [View Article][PubMed]
    [Google Scholar]
  10. Donati C., Hiller N. L., Tettelin H., Muzzi A., Croucher N. J., Angiuoli S. V., Oggioni M., Dunning Hotopp J. C., Hu F. Z. et al. 2010; Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11:R107 [View Article][PubMed]
    [Google Scholar]
  11. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  12. Frandsen E. V. G., Pedrazzoli V., Kilian M. 1991; Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6:129–133 [View Article][PubMed]
    [Google Scholar]
  13. Gao X.-Y., Zhi X.-Y., Li H.-W., Klenk H.-P., Li W.-J. 2014; Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One 9:e101229 [View Article]
    [Google Scholar]
  14. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P. et al. 2005; Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739 [View Article][PubMed]
    [Google Scholar]
  15. Gizard Y., Zbinden A., Schrenzel J., Francois P. 2013; Whole-Genome Sequences of Streptococcus tigurinus Type Strain AZ_3a and S. tigurinus 1366, a Strain Causing Prosthetic Joint Infection. Genome Announc 1:e00210-12 [View Article]
    [Google Scholar]
  16. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  17. Hanage W. P., Fraser C., Spratt B. G. 2006; Sequences, sequence clusters and bacterial species. Philos Trans Land R Soc Land B Biol Sci 361:1917–1927 [View Article]
    [Google Scholar]
  18. Handley P., Coykendall A., Beighton D., Hardie J. M., Whiley R. A. 1991; Streptococcus crista sp. nov., a viridans streptococcus with tufted fibrils, isolated from the human oral cavity and throat. Int J Syst Bacteriol 41:543–547 [View Article]
    [Google Scholar]
  19. Hoshino T., Fujiwara T., Kilian M. 2005; Use of phylogenetic and phenotypic analyses to Identify nonhemolytic streptococci isolated from bacteremic patients. J Clin Microbiol 43:6073–6085 [View Article]
    [Google Scholar]
  20. Jensen A., Valdórsson O., Frimodt-Møller N., Hollingshead S., Kilian M. 2015; Commensal streptococci serve as a reservoir for β-Lactam resistance genes in Streptococcus pneumoniae. Antimicrob Chemother 59:3529–3540 [View Article]
    [Google Scholar]
  21. Kaas R. S., Leekitcharoenphon P., Aarestrup F. M., Lund O. 2014; Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 9:e104984 [View Article][PubMed]
    [Google Scholar]
  22. Kawamura Y., Hou X. G., Sultana F., Miura H., Ezaki T. 1995; Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the Genus Streptococcus. Int J Syst Bacteriol 45:406–408 [View Article]
    [Google Scholar]
  23. Kikuchi K., Enari T., Totsuka K., Shimizu K. 1995; Comparison of phenotypic characteristics, DNA-DNA hybridization results, and results with a commercial rapid biochemical and enzymatic reaction system for identification of viridans group streptococci. J Clin Microbiol 33:1215–1222
    [Google Scholar]
  24. Kilian M., Mikkelsen L., Henrichsen J. 1989; Taxonomic study of Viridans streptococci: Description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). Int J Syst Bacteriol 39:471–484 [View Article]
    [Google Scholar]
  25. Kilian M., Poulsen K., Blomqvist T., Håvarstein L. S., Bek-Thomsen M., Tettelin H., Sørensen U. B. S. 2008; Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 3:e2683 [View Article]
    [Google Scholar]
  26. Kilian M., Riley D. R., Jensen A., Bruggemann H., Tettelin H. 2014; Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. mBio 5:e01490-14 [View Article]
    [Google Scholar]
  27. Konstantinidis K. T., Tiedje J. M. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572 [View Article]
    [Google Scholar]
  28. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. 1992 International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Lefébure T., Stanhope M. J. 2007; Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 8:R71 [View Article][PubMed]
    [Google Scholar]
  30. Loman N. J., Pallen M. J. 2015; Twenty years of bacterial genome sequencing. Nat Rev Microbiol 13:787–794 [View Article]
    [Google Scholar]
  31. Mitchell T. J. 2003; The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol 1:219–230 [View Article]
    [Google Scholar]
  32. Poulsen K., Reinholdt J., Jespersgaard C., Boye K., Brown T. A., Hauge M., Kilian M. 1998; A comprehensive genetic study of streptococcal immunoglobulin A1 proteases: evidence for recombination within and between species. Infect Immun 66:181–190
    [Google Scholar]
  33. Ralph A. P., Carapetis J. R. 2013; Group a streptococcal diseases and their global burden. Curr Top Microbiol Immunol 368:1–27
    [Google Scholar]
  34. Rasmussen L. H., Dargis R., Højholt K., Christensen J. J., Skovgaard O., Justesen U. S., Rosenvinge F. S., Moser C., Lukjancenko O. et al. 2016; Whole genome sequencing as a tool for phylogenetic analysis of clinical strains of Mitis group streptococci. Eur J Clin Microbiol Infect Dis 35: [View Article][PubMed]
    [Google Scholar]
  35. Reichmann P., Nuhn M., Denapaite D., Bruckner R., Henrich B., Maurer P., Rieger M., Klages S., Reinhard R., Hakenbeck R. 2011; Genome of Streptococcus oralis Strain Uo5. J Bacteriol 193:2888–2889 [View Article]
    [Google Scholar]
  36. Richter M., Rossello-Mora R. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131 [View Article]
    [Google Scholar]
  37. Roach D. J., Burton J. N., Lee C., Stackhouse B., Butler-Wu S. M., Cookson B. T., Shendure J., Salipante S. J. 2015; A year of infection in the intensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLoS Genet 11:e1005413 [View Article]
    [Google Scholar]
  38. Sabharwal A., Liao Y. C., Lin H. H., Haase E. M., Scannapieco F. A. 2015; Draft genome sequences of 18 oral streptococcus strains that encode amylase-binding proteins. Genome Announc 3:e00510e00515 [View Article][PubMed]
    [Google Scholar]
  39. Scholz C. F. P., Poulsen K., Kilian M. 2012; Novel molecular method for identification of Streptococcus pneumoniae applicable to clinical microbiology and 16S rRNA sequence-based microbiome studies. J Clin Microbiol 50:1968–1973 [View Article]
    [Google Scholar]
  40. Scholz C. F. P., Jensen A., Lomholt H. B., Brüggemann H., Kilian M. 2014; A novel high-resolution single locus sequence typing scheme for mixed populations of Propionibacterium acnes in vivo. PLoS One 9:e104199 [View Article]
    [Google Scholar]
  41. Scholz C. F. P., Jensen A. 2017; Development of a Single Locus Sequence Typing (SLST) scheme for typing bacterial species directly from complex communities. In Methods in Molecular Biology: Bacterial Pathogenesis: Methods and Protocols Vol. 1535 Edited by Nordenfelt P., Collin M. Denmark: Aarhus University;
    [Google Scholar]
  42. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849 [View Article]
    [Google Scholar]
  43. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  44. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article]
    [Google Scholar]
  45. Thompson C. C., Emmel V. E., Fonseca E. L., Marin M. A., Vicente A. C. 2013; Streptococcal taxonomy based on genome sequence analyses. F1000Res 2:67 [View Article][PubMed]
    [Google Scholar]
  46. Tong H., Gao X., Dong X. 2003; Streptococcus oligofermentans sp. nov., a novel oral isolate from caries-free humans. Int J Syst Evol Microbiol 53:1101–1104 [View Article]
    [Google Scholar]
  47. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  48. Whitman W. B. 2015; Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 38:217–222 [View Article]
    [Google Scholar]
  49. Zbinden A., Mueller N. J., Tarr P. E., Sproer C., Keller P. M., Bloemberg G. V. 2012; Streptococcus tigurinus sp. nov., isolated from blood of patients with endocarditis, meningitis and spondylodiscitis. Int J Evol Microbiol 62:2941–2945 [View Article]
    [Google Scholar]
  50. Zbinden A., Quiblier C., Hernandez D., Herzog K., Bodler P., Senn M. M., Gizard Y., Schrenzel J., Francois P. 2014; Characterization of Streptococcus tigurinus small-colony variants causing prosthetic joint infection by comparative whole-genome analyses. J Clin Microbiol 52:467–474 [View Article]
    [Google Scholar]
  51. Zbinden A., Bostanci N., Belibasakis G. N. 2015; The novel species Streptococcus tigurinus and its association with oral infection. Virulence 6:177–182 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001433
Loading
/content/journal/ijsem/10.1099/ijsem.0.001433
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error