1887

Abstract

. Carbapenems are often described as the most effective weapon against infections caused by multidrug-resistant bacteria especially those belonging to the group of non-fermenting bacteria such as . The main mechanisms leading to resistance are the hyperexpression of certain efflux pumps belonging to the resisto-nodular division and the lower expression of the transmembrane porin OprD, sometimes in combination with excessive production of the intrinsic AmpC. Carbapenemases are assumed to play a secondary role.

The aim of this study was to determine the exact mechanisms of carbapenem resistance in isolates from the largest Bulgarian University hospital ‘St. George’- Plovdiv.

. A total of 32 clinical isolates collected from different patients’ samples resistant to imipenem and/or meropenem were examined via phenotypic and molecular-genetic tests.

. No metallo-enzyme production was detected. Three isolates were positive for OXA-50-encoding genes in two of them in combination with other oxacillinases or the gene. For the first time, OXA-50-producing have been reported in Bulgaria. The increased expression or hyperexpression of MexXY-OprM efflux pump was observed as the main mechanism of resistance. In most cases, it was combined with lower expression or lack of OprD with or without MexAB-OprM hyperexpression. No excessive production of AmpC was detected in comparison to the reference ATCC 27853 . strain.

. The increased expression or overexpression of MexXY-OprM efflux pumps is the leading cause of carbapenem resistance in our isolates , detected in 94 % of the bacteria investigated.

Keyword(s): AmpC , carbapenem resistance , efflux , OprD and OXA-50
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001106
2019-11-20
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/12/1723.html?itemId=/content/journal/jmm/10.1099/jmm.0.001106&mimeType=html&fmt=ahah

References

  1. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clinical Infectious Diseases 2002; 34:634–640 [View Article]
    [Google Scholar]
  2. Köhler T, Michea-Hamzehpour M, Epp SF, Pechere J-C. Carbapenem Activities against Pseudomonas aeruginosa : Respective Contributions of OprD and Efflux Systems. Antimicrob Agents Chemother 1999; 43:424–427 [View Article]
    [Google Scholar]
  3. Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa . Front Microbiol 2012; 3:1–13 [View Article]
    [Google Scholar]
  4. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2000; 44:3322–3327 [View Article]
    [Google Scholar]
  5. Dumas JL, van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254:217–225 [View Article]
    [Google Scholar]
  6. Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev 2017; 41:698–722 [View Article]
    [Google Scholar]
  7. Bush K. Carbapenemases: partners in crime. J Glob Antimicrob Resist 2013; 1:7–16 [View Article]
    [Google Scholar]
  8. Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J et al. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from serbia. Antimicrob Agents Chemother 2011; 55:3929–3931 [View Article] [View Article]
    [Google Scholar]
  9. Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2004; 48:2043–2048 [View Article]
    [Google Scholar]
  10. Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii . Antimicrob Agents Chemother 2001; 45:583–588 [View Article]
    [Google Scholar]
  11. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S et al. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 2001; 8:213–253
    [Google Scholar]
  12. Jacoby GA. Ampc beta-lactamases. Clin Microbiol Rev 2009; 22:161–182 [View Article]
    [Google Scholar]
  13. Mathur P, Tak V, Gupta G. Detection of Amp C β lactamases in gram-negative bacteria. J Lab Physicians 2014; 6:1 [View Article]
    [Google Scholar]
  14. Lee K, Chong Y, Shin HB, Kim YA, Yong D et al. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001; 7:88–91 [View Article]
    [Google Scholar]
  15. Pasteran F, Veliz O, Rapoport M, Guerriero L, Corso A. Sensitive and specific modified Hodge test for KPC and metallo-beta- lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603. J Clin Microbiol 2011; 49:4301–4303 [View Article]
    [Google Scholar]
  16. Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol 2012; 50:3773–3776 [View Article]
    [Google Scholar]
  17. Иванова К. Бета-лактамази с карбапенемазна активност - микробиологични и молекулярно-генетични проучвания. Дисертационен труд за присъждане на образователна и научна степен “Доктор” София: България; 2017
    [Google Scholar]
  18. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50:1633–1641 [View Article]
    [Google Scholar]
  19. Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F et al. Alterations of oprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother 2012; 56:1703–1713 [View Article]
    [Google Scholar]
  20. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U. Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 2003; 52:403–408 [View Article]
    [Google Scholar]
  21. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 2007; 13:1–46 [View Article]
    [Google Scholar]
  22. Schneider I, Keuleyan E, Rasshofer R, Markovska R, Queenan AM et al. VIM-15 and VIM-16, two new VIM-2-like metallo-beta-lactamases in Pseudomonas aeruginosa isolates from Bulgaria and Germany. Antimicrob Agents Chemother 2008; 52:2977–2979 [View Article]
    [Google Scholar]
  23. Lepsanovic Z, Libisch B, Tomanovic B, Nonkovici Z, Balogh B et al. Characterisation of the first VIM metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolate in Serbia. Acta Microbiol Immunol Hung 2008; 55:447–454 [View Article]
    [Google Scholar]
  24. Dortet L, Flonta M, Boudehen YM, Creton E, Bernabeu S et al. Dissemination of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa in Romania. Antimicrob Agents Chemother 2015; 59:7100–7103 [View Article]
    [Google Scholar]
  25. Iraz M, Duzgun AO, Cicek AC, Bonnin RA, Ceylan A et al. Characterization of novel VIM carbapenemase, VIM-38, and first detection of GES-5 carbapenem-hydrolyzing β-lactamases in Pseudomonas aeruginosa in turkey. Diagn Microbiol Infect Dis 2014; 78:292–294 [View Article]
    [Google Scholar]
  26. Tsakris A, Pournaras S, Woodford N, Palepou MF, Babini GS et al. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol 2000; 38:1290–1292
    [Google Scholar]
  27. Vatcheva-Dobrevska R, Mulet X, Ivanov I, Zamorano L, Dobreva E et al. Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals. Microb Drug Resist 2013; 19:355–361 [View Article]
    [Google Scholar]
  28. Saito K, Yoneyama H, Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol Lett 1999; 179:67–72 [View Article]
    [Google Scholar]
  29. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54:969–976 [View Article]
    [Google Scholar]
  30. Zincke D, Balasubramanian D, Silver LL, Mathee K. Characterization of a carbapenem-hydrolyzing enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2016; 60:936–945 [View Article]
    [Google Scholar]
  31. Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006; 57:373–383 [View Article]
    [Google Scholar]
  32. Liu M, BZ D, Zeng W, Cheng X, Tao CM et al. Research on the distribution of OXA-50 gene in carbapenems-resistant Pseudomonas aeruginosas . Chinese J Antibiot 2008; 33:733–735
    [Google Scholar]
  33. Hashizume T, Ishino F, Nakagawa J, Tamaki S, Matsuhashi M. Studies on the mechanism of action of imipenem (N-formimidoylthienamycin) in vitro: binding to the penicillin-binding proteins (PBPs) in Escherichia coli and Pseudomonas aeruginosa, and inhibition of enzyme activities due to the PBPs in E. coli . J Antibiot 1984; 37:394–400 [View Article]
    [Google Scholar]
  34. Yang Y, Bhachech N, Bush K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. J Antimicrob Chemother 1995; 35:75–84 [View Article]
    [Google Scholar]
  35. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army medical center. Antimicrob Agents Chemother 2006; 50:4114–4123 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001106
Loading
/content/journal/jmm/10.1099/jmm.0.001106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error