1887

Abstract

is a common cause of urinary tract infection. Wild-type strains are usually susceptible to penicillins and cephalosporins, but occurrences of producing extended-spectrum β-lactamases (ESBLs) have been recently reported. Here, we surveyed the prevalence of cefotaxime resistance among strains at seven different hospitals in Kanagawa Prefecture, Japan, and investigated their molecular epidemiology to explain the mechanism of their spread. The prevalence of cefotaxime resistance among increased annually, from 10.1 % in 1998 to 23.1 % in 2003, and increased drastically in 2004, exceeding 40 %. We collected 105 consecutive and non-duplicate cefotaxime-resistant isolates (MIC 16 to >256 µg ml) from these hospitals from June 2004 to May 2005 and characterized their profile. PCR and sequence analysis revealed that all resistant strains produced exclusively CTX-M-2 β-lactamase. PFGE analysis identified 47 banding patterns with 83 % or greater similarity. These results indicated that a regional outbreak of producing CTX-M-2 β-lactamase has occurred in Japan and suggest that the epidemic spread occurred within and across hospitals and communities by extended clonal strains. Plasmid analysis revealed that 44.8 % of plasmids harboured by isolates had common profiles, encoding IS, IS and , and belonged to incompatibility group T. Spread of the resistant isolates in Japan resulted from dissemination of narrow-host-range plasmids of the IncT group encoding . These findings indicate the rapidly developing problem of treating the species to prevent dissemination of ESBL producers.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.049726-0
2012-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/12/1727.html?itemId=/content/journal/jmm/10.1099/jmm.0.049726-0&mimeType=html&fmt=ahah

References

  1. Baraniak A., Fiett J., Sulikowska A., Hryniewicz W., Gniadkowski M. 2002; Countrywide spread of CTX-M-3 extended-spectrum β-lactamase-producing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob Agents Chemother 46:151–159 [View Article][PubMed]
    [Google Scholar]
  2. Batchelor M., Hopkins K., Threlfall E. J., Clifton-Hadley F. A., Stallwood A. D., Davies R. H., Liebana E. 2005; bla CTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother 49:1319–1322 [View Article][PubMed]
    [Google Scholar]
  3. Biendo M., Thomas D., Laurans G., Hamdad-Daoudi F., Canarelli B., Rousseau F., Castelain S., Eb F. 2005; Molecular diversity of Proteus mirabilis isolates producing extended-spectrum β-lactamases in a French university hospital. Clin Microbiol Infect 11:395–401 [View Article][PubMed]
    [Google Scholar]
  4. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [View Article][PubMed]
    [Google Scholar]
  5. Bonnet R., De Champs C., Sirot D., Chanal C., Labia R., Sirot J. 1999; Diversity of TEM mutants in Proteus mirabilis . Antimicrob Agents Chemother 43:2671–2677[PubMed]
    [Google Scholar]
  6. Bradford P. A. 2001; Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951 [View Article][PubMed]
    [Google Scholar]
  7. Burland T. G. 2000; DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91[PubMed]
    [Google Scholar]
  8. Cantón R., Coque T. M. 2006; The CTX-M β-lactamase pandemic. Curr Opin Microbiol 9:466–475 [View Article][PubMed]
    [Google Scholar]
  9. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J. 2005; Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228 [View Article][PubMed]
    [Google Scholar]
  10. Chanal C., Bonnet R., De Champs C., Sirot D., Labia R., Sirot J. 2000; Prevalence of β-lactamases among 1,072 clinical strains of Proteus mirabilis: a 2-year survey in a French hospital. Antimicrob Agents Chemother 44:1930–1935 [View Article][PubMed]
    [Google Scholar]
  11. CLSI 2005 Performance Standards for Antimicrobial Susceptibility Testing 15th Informational Supplement Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  12. de Champs C., Bonnet R., Sirot D., Chanal C., Sirot J. 2000; Clinical relevance of Proteus mirabilis in hospital patients: a two year survey. J Antimicrob Chemother 45:537–539 [View Article][PubMed]
    [Google Scholar]
  13. Eckert C., Gautier V., Arlet G. 2006; DNA sequence analysis of the genetic environment of various bla CTX-M genes. J Antimicrob Chemother 57:14–23 [View Article][PubMed]
    [Google Scholar]
  14. Ford P. J., Avison M. B. 2004; Evolutionary mapping of the SHV β-lactamase and evidence for two separate IS26-dependent bla SHV mobilization events from the Klebsiella pneumoniae chromosome. J Antimicrob Chemother 54:69–75 [View Article][PubMed]
    [Google Scholar]
  15. Ho P. L., Ho A. Y., Chow K. H., Wong R. C., Duan R. S., Ho W. L., Mak G. C., Tsang K. W., Yam W. C., Yuen K. Y. 2005; Occurrence and molecular analysis of extended-spectrum β-lactamase-producing Proteus mirabilis in Hong Kong, 1999–2002. J Antimicrob Chemother 55:840–845 [View Article][PubMed]
    [Google Scholar]
  16. Hosaka Y., Irinoda K., Nakano R., Tanabe S., Koizumi W., Saigenji K., Inoue M. 2005; Use of the restriction enzyme EcoRI for pulsed-field gel electrophoretic analysis of Helicobacter pylori . J Clin Microbiol 43:931–932 [View Article][PubMed]
    [Google Scholar]
  17. Jones B. V., Mahenthiralingam E., Sabbuba N. A., Stickler D. J. 2005; Role of swarming in the formation of crystalline Proteus mirabilis biofilms on urinary catheters. J Med Microbiol 54:807–813 [View Article][PubMed]
    [Google Scholar]
  18. Karapavlidou P., Sofianou D., Manolis E. N., Pournaras S., Tsakris A. 2005; CTX-M-1 extended-spectrum β-lactamase-producing Proteus mirabilis in Greece. Microb Drug Resist 11:351–354 [View Article][PubMed]
    [Google Scholar]
  19. Kim J. Y., Park Y. J., Kim S. I., Kang M. W., Lee S. O., Lee K. Y. 2004; Nosocomial outbreak by Proteus mirabilis producing extended-spectrum β-lactamase VEB-1 in a Korean university hospital. J Antimicrob Chemother 54:1144–1147 [View Article][PubMed]
    [Google Scholar]
  20. Lavollay M., Mamlouk K., Frank T., Akpabie A., Burghoffer B., Ben Redjeb S., Bercion R., Gautier V., Arlet G. 2006; Clonal dissemination of a CTX-M-15 β-lactamase-producing Escherichia coli strain in the Paris area, Tunis, and Bangui. Antimicrob Agents Chemother 50:2433–2438 [View Article][PubMed]
    [Google Scholar]
  21. Livermore D. M., Hawkey P. M. 2005; CTX-M: changing the face of ESBLs in the UK. J Antimicrob Chemother 56:451–454 [View Article][PubMed]
    [Google Scholar]
  22. Luzzaro F., Perilli M., Amicosante G., Lombardi G., Belloni R., Zollo A., Bianchi C., Toniolo A. 2001; Properties of multidrug-resistant, ESBL-producing Proteus mirabilis isolates and possible role of β-lactam/β-lactamase inhibitor combinations. Int J Antimicrob Agents 17:131–135 [View Article][PubMed]
    [Google Scholar]
  23. Nagano N., Shibata N., Saitou Y., Nagano Y., Arakawa Y. 2003; Nosocomial outbreak of infections by Proteus mirabilis that produces extended-spectrum CTX-M-2 type β-lactamase. J Clin Microbiol 41:5530–5536 [View Article][PubMed]
    [Google Scholar]
  24. Nakano R., Okamoto R., Nakano Y., Kaneko K., Okitsu N., Hosaka Y., Inoue M. 2004; CFE-1, a novel plasmid-encoded AmpC β-lactamase with an ampR gene originating from Citrobacter freundii . Antimicrob Agents Chemother 48:1151–1158 [View Article][PubMed]
    [Google Scholar]
  25. Nakano R., Okamoto R., Nagano N., Inoue M. 2007; Resistance to gram-negative organisms due to high-level expression of plasmid-encoded ampC β-lactamase bla CMY-4 promoted by insertion sequence ISEcp1 . J Infect Chemother 13:18–23 [View Article][PubMed]
    [Google Scholar]
  26. Novais A., Cantón R., Valverde A., Machado E., Galán J. C., Peixe L., Carattoli A., Baquero F., Coque T. M. 2006; Dissemination and persistence of bla CTX-M-9 are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from Tn402 located in early antibiotic resistance plasmids of IncHI2, IncP1-α, and IncFI groups. Antimicrob Agents Chemother 50:2741–2750 [View Article][PubMed]
    [Google Scholar]
  27. Odakura Y., Hashimoto H., Mitsuhashi S. 1977; Temperature sensitive R plasmids isolated from Proteus strains. Microbiol Immunol 21:621–629[PubMed] [CrossRef]
    [Google Scholar]
  28. Park Y. J., Lee S., Kim Y. R., Oh E. J., Woo G. J., Lee K. 2006; Occurrence of extended-spectrum β-lactamases and plasmid-mediated AmpC β-lactamases among Korean isolates of Proteus mirabilis . J Antimicrob Chemother 57:156–158 [View Article][PubMed]
    [Google Scholar]
  29. Paterson D. L., Bonomo R. A. 2005; Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18:657–686 [View Article][PubMed]
    [Google Scholar]
  30. Pérez-Pérez F. J., Hanson N. D. 2002; Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162 [View Article][PubMed]
    [Google Scholar]
  31. Poirel L., Decousser J. W., Nordmann P. 2003; Insertion sequence ISEcp1B is involved in expression and mobilization of a bla CTX-M β-lactamase gene. Antimicrob Agents Chemother 47:2938–2945 [View Article][PubMed]
    [Google Scholar]
  32. Quinteros M., Radice M., Gardella N., Rodriguez M. M., Costa N., Korbenfeld D., Couto E., Gutkind G. Microbiology Study Group 2003; Extended-spectrum β-lactamases in enterobacteriaceae in Buenos Aires, Argentina, public hospitals. Antimicrob Agents Chemother 47:2864–2867 [View Article][PubMed]
    [Google Scholar]
  33. Radice M., Power P., Di Conza J., Gutkind G., Bonnet R., Sirot D., Sirot J., Labia R. 2002; Early dissemination of CTX-M-derived enzymes in South America. Antimicrob Agents Chemother 46:602–604 [View Article][PubMed]
    [Google Scholar]
  34. Rossolini G. M., D’Andrea M. M., Mugnaioli C. 2008; The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect 14:Suppl. 133–41 [View Article][PubMed]
    [Google Scholar]
  35. Rózalski A., Sidorczyk Z., Kotełko K. 1997; Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65–89[PubMed]
    [Google Scholar]
  36. Saladin M., Cao V. T., Lambert T., Donay J. L., Herrmann J. L., Ould-Hocine Z., Verdet C., Delisle F., Philippon A., Arlet G. 2002; Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 209:161–168[PubMed]
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  38. Saurina G., Quale J. M., Manikal V. M., Oydna E., Landman D. 2000; Antimicrobial resistance in Enterobacteriaceae in Brooklyn, NY: epidemiology and relation to antibiotic usage patterns. J Antimicrob Chemother 45:895–898 [View Article][PubMed]
    [Google Scholar]
  39. Shapiro J. 1977 Appendix B: Bacterial Plasmids Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239[PubMed]
    [Google Scholar]
  41. Verdet C., Arlet G., Ben Redjeb S., Ben Hassen A., Lagrange P. H., Philippon A. 1998; Characterisation of CMY-4, an AmpC-type plasmid-mediated β-lactamase in a Tunisian clinical isolate of Proteus mirabilis . FEMS Microbiol Lett 169:235–240[PubMed]
    [Google Scholar]
  42. Villegas M. V., Correa A., Perez F., Miranda M. C., Zuluaga T., Quinn J. P. Colombian Nosocomial Resistance Study Group (See) 2004; Prevalence and characterization of extended-spectrum β-lactamases in Klebsiella pneumoniae and Escherichia coli isolates from Colombian hospitals. Diagn Microbiol Infect Dis 49:217–222 [View Article][PubMed]
    [Google Scholar]
  43. Woodford N., Ward M. E., Kaufmann M. E., Turton J., Fagan E. J., James D., Johnson A. P., Pike R., Warner M. other authors 2004; Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J Antimicrob Chemother 54:735–743 [View Article][PubMed]
    [Google Scholar]
  44. Wu L. T., Wu H. J., Chung J. G., Chuang Y. C., Cheng K. C., Yu W. L. 2006; Dissemination of Proteus mirabilis isolates harboring CTX-M-14 and CTX-M-3 β-lactamases at 2 hospitals in Taiwan. Diagn Microbiol Infect Dis 54:89–94 [View Article][PubMed]
    [Google Scholar]
  45. Yagi T., Kurokawa H., Shibata N., Shibayama K., Arakawa Y. 2000; A preliminary survey of extended-spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett 184:53–56[PubMed]
    [Google Scholar]
  46. Yano H., Kuga A., Okamoto R., Kitasato H., Kobayashi T., Inoue M. 2001; Plasmid-encoded metallo-β-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother 45:1343–1348 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.049726-0
Loading
/content/journal/jmm/10.1099/jmm.0.049726-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error