1887

Abstract

The rapid identification of isolates to strain level would significantly inform the public health investigation of infection. Conceptual advances provided by multilocus sequence typing (MLST) have established the clonal complex as an important epidemiological group at the strain level, enabling accurate and phylogenetically valid strain identification for . The development of real-time PCR assays for allelic discrimination of strain-associated single-nucleotide polymorphisms (SNPs) based upon MLST locus alleles offers one possible approach for rapid strain detection. SNPs defining key alleles diagnostic for the most prevalent clonal complexes were identified following a detailed analysis of the available MLST data. Real-time Taqman allelic discrimination assays designed to detect the SNPs specific for six major clonal complexes, ST-21, ST-45, ST-48, ST-61, ST-206 and ST-257, were developed, allowing the rapid detection of isolates and preliminary strain identification. This will provide an important complementary technique to sequence typing for rapid detection and strain characterization to inform in real-time the public health management and investigation of infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45971-0
2005-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/10/JM541003.html?itemId=/content/journal/jmm/10.1099/jmm.0.45971-0&mimeType=html&fmt=ahah

References

  1. Achtman M. 1996; A surfeit of YATMs?. J Clin Microbiol 34:1870
    [Google Scholar]
  2. Applied Biosystems 2002; Taqman MGB Probes. SDS News 17:1–2
    [Google Scholar]
  3. Best E. L., Fox A. J., Frost J. A., Bolton F. J. 2004; Identification of Campylobacter jejuni multilocus sequence type ST-21 clonal complex by single-nucleotide polymorphism analysis. J Clin Microbiol 42:2836–2839 [CrossRef]
    [Google Scholar]
  4. Colles F. M., Jones K., Harding R. M., Maiden M. C. 2003; Genetic diversity of Campylobacter jejuni isolates from farm animals and the farm environment. Appl Environ Microbiol 69:7409–7413 [CrossRef]
    [Google Scholar]
  5. Dingle K. E., Colles F. M., Wareing D. R. A. & 7 other authors; 2001; Multilocus sequence typing system for Campylobacter jejuni . J Clin Microbiol 39:14–23 [CrossRef]
    [Google Scholar]
  6. Dingle K. E., Colles F. M., Ure R., Wagenaar J. A., Duim B., Bolton F. J., Fox A. J., Wareing D. R., Maiden M. C. 2002; Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis 8:949–955 [CrossRef]
    [Google Scholar]
  7. Koo K., Jaykus L. A. 2002; Detection of single nucleotide polymorphisms within the Listeria genus using an ‘asymmetric’ fluorogenic probe set and fluorescence resonance energy transfer based-PCR. Lett Appl Microbiol 35:513–517 [CrossRef]
    [Google Scholar]
  8. Maiden M. C., Bygraves J. A., Feil E. & 10 other authors; 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci 95:3140–3145 [CrossRef]
    [Google Scholar]
  9. Manning G., Dowson C. G., Bagnall M. C., Ahmed I. H., West M., Newell D. G. 2003; Multilocus sequence typing for comparison of veterinary and human isolates of Campylobacter jejuni . Appl Environ Microbiol 69:6370–6379 [CrossRef]
    [Google Scholar]
  10. Moorhead S. M., Dykes G. A., Cursons R. T. 2003; An SNP-based PCR assay to differentiate between Listeria monocytogenes lineages derived from phylogenetic analysis of the sigB gene. J Microbiol Methods 55:425–432 [CrossRef]
    [Google Scholar]
  11. Robertson G. A., Thiruvenkataswamy V., Shilling H., Price E. P., Huygens F., Henskens F. A., Giffard P. M. 2004; Identification and interrogation of highly informative single nucleotide polymorphism sets defined by bacterial multilocus sequence typing databases. J Med Microbiol 53:35–45 [CrossRef]
    [Google Scholar]
  12. Sails A. D., Swaminathan B., Fields P. I. 2003a; Clonal complexes of Campylobacter jejuni identified by Multilocus Sequence Typing correlate with strain associations identified by multilocus enzyme electrophoresis. J Clin Microbiol 41:4058–4067 [CrossRef]
    [Google Scholar]
  13. Sails A. D., Swaminathan B., Fields P. I. 2003b; Utility of multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni . J Clin Microbiol 41:4733–4739 [CrossRef]
    [Google Scholar]
  14. Schouls L. M., Reulen S., Duim B., Wagenaar J. A., Willems R. J., Dingle K. E., Colles F. M., Van Embden J. D. 2003; Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol 41:15–26 [CrossRef]
    [Google Scholar]
  15. Taylor J. W., Fisher M. C. 2003; Fungal multilocus sequence typing – it's not just for bacteria. Curr Opin Microbiol 6:351–356 [CrossRef]
    [Google Scholar]
  16. van Leeuwen W. B., Jay C., Snijders S., Durin N., Lacroix B., Verbrugh H. A., Enright M. C., Troesch A., van Belkum A. 2003; Multilocus sequence typing of Staphylococcus aureus with DNA array technology. J Clin Microbiol 41:3323–3326 [CrossRef]
    [Google Scholar]
  17. Wareing D. R. A., Ure R., Colles F. M., Bolton F. J., Fox A. J., Maiden M. C. J., Dingle K. E. 2003; Reference isolates for the clonal complexes of Campylobacter jejuni . Lett Appl Microbiol 36:106–110 [CrossRef]
    [Google Scholar]
  18. Wassenaar T. M., Newell D. G. 2000; Genotyping of Campylobacter spp. Appl Environ Microbiol 66:1–9 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45971-0
Loading
/content/journal/jmm/10.1099/jmm.0.45971-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error