1887

Abstract

The response of cells of the mouse macrophage cell line J774 to infection with LVS was analysed by means of a DNA microarray representing approximately 18 500 genes (20 600 clones). The adaptive response was modest at all time points, and at most, 81 clones were differentially regulated from the time point of uptake of bacteria (0 min) up to 240 min later. For all five time points, 229 clones fulfilled the criteria of being differentially regulated, i.e. the ratio between infected versus non-infected cells was at least 1.7-fold up- or down-regulated and <0.05. It was found that many of the differentially regulated genes are known to respond to stress in general and to oxidative stress specifically. However, at 120 min it was observed that genes that lead to depletion of glutathione were upregulated. Possibly, this was a result of mechanisms induced by . Generally, there was a conspicuous lack of inflammatory responses and, for example, although tumour necrosis factor alpha (TNF-) was upregulated at 0 min, a significant down-regulation was noted at all subsequent time points. When cells were treated with an inhibitor of inducible nitric oxide synthase (iNOS) or the antioxidant -acetylcysteine (NAC), the infection-induced cytopathogenic effect was significantly inhibited. Together, the results suggest that LVS infection confers an oxidative stress upon the target cells and that many of the host-defence mechanisms appear to be intended to counteract this stress. The infection is characterized by a very modest inflammatory response.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46553-0
2006-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/8/1023.html?itemId=/content/journal/jmm/10.1099/jmm.0.46553-0&mimeType=html&fmt=ahah

References

  1. Baldi P., Long A. D. 2001; A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 17:509–519 [CrossRef]
    [Google Scholar]
  2. Barnhart B. C., Lee J. C., Alappat E. C., Peter M. E. 2003; The death effector domain protein family. Oncogene 22:8634–8644 [CrossRef]
    [Google Scholar]
  3. Blader I. J., Manger I. D., Boothroyd J. C. 2001; Microarray analysis reveals previously unknown changes in Toxoplasma gondii -infected human cells. J Biol Chem 276:24223–24231 [CrossRef]
    [Google Scholar]
  4. Cao Q., Mak K. M., Lieber C. S. 2005; Cytochrome P4502E1 primes macrophages to increase TNF-alpha production in response to lipopolysaccharide. Am J Physiol Gastrointest Liver Physiol 289:G95–G107 [CrossRef]
    [Google Scholar]
  5. Carballo E., Lai W. S., Blackshear P. J. 1998; Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001–1005 [CrossRef]
    [Google Scholar]
  6. Cascales E., Christie P. J. 2003; The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149 [CrossRef]
    [Google Scholar]
  7. Ceulemans H., Bollen M. 2004; Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39 [CrossRef]
    [Google Scholar]
  8. Clemens D. L., Lee B. Y., Horwitz M. A. 2004; Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72:3204–3217 [CrossRef]
    [Google Scholar]
  9. Cossart P., Sansonetti P. J. 2004; Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248 [CrossRef]
    [Google Scholar]
  10. Crofts A. R. 2004; The cytochrome bc 1 complex: function in the context of structure. Annu Rev Physiol 66:689–733 [CrossRef]
    [Google Scholar]
  11. Dudley A. M., Aach J., Steffen M. A., Church G. M. 2002; Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci U S A 99:7554–7559 [CrossRef]
    [Google Scholar]
  12. Eskra L., Mathison A., Splitter G. 2003; Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus . Infect Immun 71:1125–1133 [CrossRef]
    [Google Scholar]
  13. Ferrell K., Wilkinson C. R., Dubiel W., Gordon C. 2000; Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 25:83–88 [CrossRef]
    [Google Scholar]
  14. Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjostedt A. 2003; An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71:5940–5950 [CrossRef]
    [Google Scholar]
  15. Grunow R., Splettstoesser W., McDonald S. & 7 other authors; 2000; Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin Diagn Lab Immunol 7:86–90
    [Google Scholar]
  16. Hilgarth R. S., Murphy L. A., Skaggs H. S., Wilkerson D. C., Xing H., Sarge K. D. 2004; Regulation and function of SUMO modification. J Biol Chem 279:53899–53902 [CrossRef]
    [Google Scholar]
  17. Inoue M., Sato E. F., Nishikawa M., Park A. M., Kira Y., Imada I., Utsumi K. 2003; Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505 [CrossRef]
    [Google Scholar]
  18. Jean J. C., Liu Y., Joyce-Brady M. 2003; The importance of gamma-glutamyl transferase in lung glutathione homeostasis and antioxidant defense. Biofactors 17:161–173 [CrossRef]
    [Google Scholar]
  19. Kargul G. J., Dudekula D. B., Qian Y., Lim M. K., Jaradat S. A., Tanaka T. S., Carter M. G., Ko M. S. 2001; Verification and initial annotation of the NIA mouse 15K cDNA clone set. Nat Genet 28:17–18
    [Google Scholar]
  20. Lai X. H., Sjostedt A. 2003; Delineation of the molecular mechanisms of Francisella tularensis -induced apoptosis in murine macrophages. Infect Immun 71:4642–4646 [CrossRef]
    [Google Scholar]
  21. Larsson P., Oyston P. C., Chain P. & 24 other authors; 2005; The complete genome sequence of Francisella tularensis , the causative agent of tularemia. Nat Genet 37:153–159 [CrossRef]
    [Google Scholar]
  22. Lauriano C. M., Barker J. R., Yoon S. S., Nano F. E., Arulanandam B. P., Hassett D. J., Klose K. E. 2004; MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101:4246–4249 [CrossRef]
    [Google Scholar]
  23. Mitsuhashi S., Shima H., Tanuma N., Matsuura N., Takekawa M., Urano T., Kataoka T., Ubukata M., Kikuchi K. 2003; Usage of tautomycetin, a novel inhibitor of protein phosphatase 1 (PP1), reveals that PP1 is a positive regulator of Raf-1 in vivo. J Biol Chem 278:82–88
    [Google Scholar]
  24. Moffett J. R., Namboodiri M. A. 2003; Tryptophan and the immune response. Immunol Cell Biol 81:247–265 [CrossRef]
    [Google Scholar]
  25. Nano F. E., Zhang N., Cowley S. C. & 8 other authors; 2004; A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186:6430–6436 [CrossRef]
    [Google Scholar]
  26. Newsholme E. A., Calder P. C. 1997; The proposed role of glutamine in some cells of the immune system and speculative consequences for the whole animal. Nutrition 13:728–730
    [Google Scholar]
  27. Niedermann G. 2002; Immunological functions of the proteasome. Curr Top Microbiol Immunol 268:91–136
    [Google Scholar]
  28. Oyston P. C., Sjostedt A., Titball R. W. 2004; Tularaemia: bioterrorism defence renews interest in Francisella tularensis . Nat Rev Microbiol 2:967–978 [CrossRef]
    [Google Scholar]
  29. Perrin A. J., Jiang X., Birmingham C. L., So N. S., Brumell J. H. 2004; Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr Biol 14:806–811 [CrossRef]
    [Google Scholar]
  30. Rosenberger C. M., Scott M. G., Gold M. R., Hancock R. E., Finlay B. B. 2000; Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol 164:5894–5904 [CrossRef]
    [Google Scholar]
  31. Sandstrom G., Sjostedt A., Johansson T., Kuoppa K., Williams J. C. 1992; Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol Immunol 5:201–210
    [Google Scholar]
  32. Sjöstedt A. B. 2005; Francisella . In Bergey's Manual of Systematic Bacteriology, Part B: The Proteobacteria pp  200–210 Edited by Brenner K., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  33. Tampakaki A. P., Fadouloglou V. E., Gazi A. D., Panopoulos N. J., Kokkinidis M. 2004; Conserved features of type III secretion. Cell Microbiol 6:805–816 [CrossRef]
    [Google Scholar]
  34. Tarnvik A., Berglund L. 2003; Tularaemia. Eur Respir J 21:361–373 [CrossRef]
    [Google Scholar]
  35. Telepnev M., Golovliov I., Grundstrom T., Tarnvik A., Sjostedt A. 2003; Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell Microbiol 5:41–51 [CrossRef]
    [Google Scholar]
  36. Thony B., Auerbach G., Blau N. 2000; Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347:1–16 [CrossRef]
    [Google Scholar]
  37. Thorne G. D., Hilliard G. M., Paul R. J. 2004; Vascular oxygen sensing: detection of novel candidates by proteomics and organ culture. J Appl Physiol 96:802–808 (discussion p. 792 [CrossRef]
    [Google Scholar]
  38. Vaena de Avalos S., Blader I. J., Fisher M., Boothroyd J. C., Burleigh B. A. 2002; Immediate/early response to Trypanosoma cruzi infection involves minimal modulation of host cell transcription. J Biol Chem 277:639–644 [CrossRef]
    [Google Scholar]
  39. Vinogradov E., Perry M. B., Conlan J. W. 2002; Structural analysis of Francisella tularensis lipopolysaccharide. Eur J Biochem 269:6112–6118 [CrossRef]
    [Google Scholar]
  40. Whipp M. J., Davis J. M., Lum G., de Boer J., Zhou Y., Bearden S. W., Petersen J. M., Chu M. C., Hogg G. 2003; Characterization of a novicida -like subspecies of Francisella tularensis isolated in Australia. J Med Microbiol 52:839–842 [CrossRef]
    [Google Scholar]
  41. Whitfield J. B. 2001; Gamma glutamyl transferase. Crit Rev Clin Lab Sci 38:263–355 [CrossRef]
    [Google Scholar]
  42. Yaron A., Gonen H., Alkalay I. & 7 other authors; 1997; Inhibition of NF- κ B cellular function via specific targeting of the I κ B-ubiquitin ligase. EMBO J 16:6486–6494 [CrossRef]
    [Google Scholar]
  43. Yuan G., Adhikary G., McCormick A. A., Holcroft J. J., Kumar G. K., Prabhakar N. R. 2004; Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol 557:773–783 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46553-0
Loading
/content/journal/jmm/10.1099/jmm.0.46553-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error