1887

Abstract

Introduction:

The treatment of chronic infections is challenging, with resistance and antibiogram diversity accumulating during successive therapies. Some isolates are resistant to all licensed agents, creating treatment problems and an urgent need for new therapies. Among antibiotics in advanced development, ceftolozane/tazobactam has potent antipseudomonal activity, with low MICs even for strains with AmpC β‐lactamase‐, impermeability‐ and efflux‐mediated resistance to other β‐lactams.

Case presentation:

A bronchiectasis exacerbation in a 59‐year‐old man involved pan‐resistant . Meropenem/colistin therapy failed. Named‐patient ceftolozane/tazobactam 2+1 g every 8 h for 14 days restored baseline respiratory and inflammatory marker status, and the patient was discharged; the ceftolozane/tazobactam MIC was 8 µg ml, with most growth inhibited at 2 µg ml.

Conclusion:

A positive outcome in this difficult infection due to an otherwise pan‐resistant is notable, especially as the patient had failed prior therapy with other agents. We urge formal evaluation of ceftolozane/tazobactam in chronic pseudomonal lung infections.

  • This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).
Loading

Article metrics loading...

/content/journal/jmmcr/10.1099/jmmcr.0.000025
2015-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmmcr/2/2/jmmcr000025.html?itemId=/content/journal/jmmcr/10.1099/jmmcr.0.000025&mimeType=html&fmt=ahah

References

  1. Andrews J.M. ( 2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48: (Suppl. 1) 5–16 [CrossRef]
    [Google Scholar]
  2. Anonymous( 2014). ZERBAXA (ceftolozane/tazobactam) for injection, for intravenous use Initial U.S. Approval: 2014. Food and Drug Administration. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206829lbl.pdf
    [Google Scholar]
  3. Ashish A., Paterson S., Mowat E., Fothergill J.L., Walshaw M.J., Winstanley C. ( 2013). Extensive diversification is a common feature of Pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis. J Cyst Fibros 12:790–793 [CrossRef]
    [Google Scholar]
  4. Boucher H.W., Talbot G.H., Benjamin D.K., Bradley J., Guidos R.J., Jones R.N., Murray B.E., Bonomo R.A., Gilbert D. the Infectious Diseases Society of America( 2013). 10×'20 Progress – development of new drugs active against Gram‐negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56:1685–1694 [CrossRef]
    [Google Scholar]
  5. British Society for Antimicrobial Chemotherapy( 2012). BSAC Methods for Antimicrobial Susceptibility Testing, version 12. http://bsac.org.uk/wp-content/uploads/2012/02/Version-12-Apr-2013_final1.pdf
  6. Chandorkar G., Huntington J.A., Gotfried M.H., Rodvold K.A., Umeh O. ( 2012). Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother 67:2463–2469 [CrossRef]
    [Google Scholar]
  7. European Committee on Antimicrobial Susceptibility Testing( 2014). Clinical breakpoints. http://www.eucast.org/clinical_breakpoints/.
  8. Juan C., Zamorano L., Pérez J.L., Ge Y., Oliver A. Spanish Group for the Study of Pseudomonas & Spanish Network for Research in Infectious Diseases( 2010). Activity of a new antipseudomonal cephalosporin, CXA‐101 (FR264205), against carbapenem‐resistant and multidrug‐resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 54:846–851 [CrossRef]
    [Google Scholar]
  9. Lepak A.J., Reda A., Marchillo K., Van Hecker J., Craig W.A., Andes D. ( 2014). Impact of MIC range for Pseudomonas aeruginosa and Streptococcus pneumoniae on the ceftolozane in vivo pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 58:6311–6314 [CrossRef]
    [Google Scholar]
  10. Livermore D.M., Mushtaq S., Ge Y., Warner M. ( 2009). Activity of cephalosporin CXA‐101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. Int J Antimicrob Agents 34:402–406 [CrossRef]
    [Google Scholar]
  11. Shlaes D.M. ( 2013). New β‐lactam–β‐lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci 1277:105–114 [CrossRef]
    [Google Scholar]
  12. Turton J.F., Turton S.E., Yearwood L., Yarde S., Kaufmann M.E., Pitt T.L. ( 2010). Evaluation of a nine‐locus variable‐number tandem‐repeat scheme for typing of Pseudomonas aeruginosa . Clin Microbiol Infect 16:1111–1116 [CrossRef]
    [Google Scholar]
  13. VanScoy B.D., Mendes R.E., Castanheira M., McCauley J., Bhavnani S.M., Jones R.N., Friedrich L.V., Steenbergen J.N., Ambrose P.G. ( 2014). Relationship between ceftolozane‐tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow‐fiber infection model. Antimicrob Agents Chemother 58:6024–6031 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmmcr/10.1099/jmmcr.0.000025
Loading
/content/journal/jmmcr/10.1099/jmmcr.0.000025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error