1887

Abstract

Genome-wide transcription profile analysis of the heat-shocked wild-type strain under moderate (40 °C) and severe heat stress (50 °C) revealed that a large number of genes are differentially expressed after heat shock. Of these, 358 genes were upregulated and 420 were downregulated in response to moderate heat shock (40 °C) in . Our results confirmed the HrcA/controlling inverted repeat of chaperone expression (CIRCE)-dependent and HspR/HspR-associated inverted repeat (HAIR)-dependent upregulation of chaperones following heat shock. Other genes, including clusters of orthologous groups (COG) related to macromolecule biosynthesis and several transcriptional regulators (COG class K), were upregulated, explaining the large number of genes affected by heat shock. Mutants having deletions in the or regulators were constructed, which allowed the complete identification of the genes controlled by those systems. The up- or downregulation of several genes observed in the microarray experiments was validated by Northern blot analyses and quantitative (real-time) reverse-transcription PCR. These analyses showed a heat-shock intensity-dependent response (‘differential response’) in the HspR/HAIR system, in contrast to the non-differential response shown by the HrcA/CIRCE-regulated genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.019299-0
2009-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/359.html?itemId=/content/journal/micro/10.1099/mic.0.019299-0&mimeType=html&fmt=ahah

References

  1. Abe S., Takayama K., Kinoshita S. 1967; Taxonomical studies on glutamic acid producing bacteria. J Gen Appl Microbiol 13:279–301
    [Google Scholar]
  2. Akopyan K., Trchounian A. 2006; Escherichia coli membrane proton conductance and proton efflux depend on growth pH and are sensitive to osmotic stress. Cell Biochem Biophys 46:201–208
    [Google Scholar]
  3. Barreiro C., González-Lavado E., Martín J. F. 2001; Organization and transcriptional analysis of a six-gene cluster around the rplK-rplA operon of Corynebacterium glutamicum encoding the ribosomal proteins L11 and L1. Appl Environ Microbiol 67:2183–2190
    [Google Scholar]
  4. Barreiro C., González-Lavado E., Pátek M., Martín J. F. 2004; Transcriptional analysis of the groES-groEL1 , groEL2 and dnaK genes in Corynebacterium glutamicum : characterization of heat shock-induced promoters. J Bacteriol 186:4813–4817
    [Google Scholar]
  5. Barreiro C., González-Lavado E., Brand S., Tauch A., Martín J. F. 2005; Heat-shock proteome analysis of wild type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking groEL1 , a dispensable chaperone. J Bacteriol 187:884–889
    [Google Scholar]
  6. Barriuso-Iglesias M., Barreiro C., Flechoso F., Martín J. F. 2006; Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology 152:11–21
    [Google Scholar]
  7. Brinkrolf K., Brune I., Tauch A. 2007; The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum . J Biotechnol 129:191–211
    [Google Scholar]
  8. Brockmann-Gretza O., Kalinowski J. 2006; Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230
    [Google Scholar]
  9. Brune I., Brinkrolf K., Kalinowski J., Puhler A., Tauch A. 2005; The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum , Corynebacterium efficiens , Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6:86
    [Google Scholar]
  10. Brune I., Werner H., Hüser A. T., Kalinowski J., Puhler A., Tauch A. 2006; The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum . BMC Genomics 7:21
    [Google Scholar]
  11. Bucca G., Ferina G., Puglia A. M., Smith C. P. 1995; The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol 17:663–674
    [Google Scholar]
  12. Bucca G., Brassington A. M., Hotchkiss G., Mersinias V., Smith C. P. 2003; Negative feedback regulation of dnaK , clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor , identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 50:153–166
    [Google Scholar]
  13. Caldara M., Charlier D., Cunin R. 2006; The arginine regulon of Escherichia coli : whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation. Microbiology 152:3343–3354
    [Google Scholar]
  14. Chhabra S. R., He Q., Huang K. H., Gaucher S. P., Alm E. J., He Z., Hadi M. Z., Hazen T. C., Wall J. D. other authors 2006; Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188:1817–1828
    [Google Scholar]
  15. Delaunay S., Lapujade P., Engasser J. M., Goergen J. L. 2002; Flexibility of the metabolism of Corynebacterium glutamicum 2262, a glutamic acid-producing bacterium, in response to temperature upshocks. J Ind Microbiol Biotechnol 28:333–337
    [Google Scholar]
  16. Derre I., Rapoport G., Msadek T. 1999; CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131
    [Google Scholar]
  17. Dondrup M., Goesmann A., Bartels D., Kalinowski J., Krause L., Linke B., Rupp O., Sczyrba A., Puhler A., Meyer F. 2003; EMMA: a platform for consistent storage and efficient analysis of microarray data. J Biotechnol 106:135–146
    [Google Scholar]
  18. Dussurget O., Rodriguez M., Smith I. 1996; An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. Mol Microbiol 22:535–544
    [Google Scholar]
  19. Engels S., Schweitzer J. E., Ludwig C., Bott M., Schaffer S. 2004; clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σ H . Mol Microbiol 52:285–302
    [Google Scholar]
  20. Garner C. C., Herrmann K. M. 1985; Operator mutations of the Escherichia coli aroF gene. J Biol Chem 260:3820–3825
    [Google Scholar]
  21. Grandvalet C., Servant P., Mazodier P. 1997; Disruption of hspR , the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol 23:77–84
    [Google Scholar]
  22. Grandvalet C., Rapoport G., Mazodier P. 1998; hrcA , encoding the repressor of the groEL genes in Streptomyces albus G, is associated with a second dnaJ gene. J Bacteriol 180:5129–5134
    [Google Scholar]
  23. Halgasova N., Bukovska G., Timko J., Kormanec J. 2001; Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB , from Brevibacterium flavum . Curr Microbiol 43:249–254
    [Google Scholar]
  24. Halgasova N., Bukovska G., Ugorcakova J., Timko J., Kormanec J. 2002; The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response. FEMS Microbiol Lett 216:77–84
    [Google Scholar]
  25. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  26. Helmann J. D., Wu M. F., Kobel P. A., Gamo F. J., Wilson M., Morshedi M. M., Navre M., Paddon C. 2001; Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328
    [Google Scholar]
  27. Hermann T. 2003; Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172
    [Google Scholar]
  28. Hermann T., Pfefferle W., Baumann C., Busker E., Schaffer S., Bott M., Sahm H., Dusch N., Kalinowski J. other authors 2001; Proteome analysis of Corynebacterium glutamicum . Electrophoresis 22:1712–1723
    [Google Scholar]
  29. Hishinuma S., Yuki M., Fujimura M., Fukumori F. 2006; OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida . Environ Microbiol 8:2115–2124
    [Google Scholar]
  30. Hüser A. T., Becker A., Brune I., Dondrup M., Kalinowski J., Plassmeier J., Puhler A., Wiegräbe I., Tauch A. 2003; Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol 106:269–286
    [Google Scholar]
  31. Hüser A. T., Chassagnole C., Lindley N. D., Merkamm M., Guyonvarch A., Elisakova V., Pátek M., Kalinowski J., Brune I. other authors 2005; Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71:3255–3268
    [Google Scholar]
  32. Ikeda M., Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109
    [Google Scholar]
  33. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25
    [Google Scholar]
  34. Kim T. H., Kim H. J., Park J. S., Kim Y., Kim P., Lee H. S. 2005; Functional analysis of sigH expression in Corynebacterium glutamicum . Biochem Biophys Res Commun 331:1542–1547
    [Google Scholar]
  35. Kirchner O., Tauch A. 2003; Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum . J Biotechnol 104:287–299
    [Google Scholar]
  36. Koch D. J., Rückert C., Rey D. A., Mix A., Pühler A., Kalinowski J. 2005; The role of the ssu and seu genes of Corynebacterium glutamicum ATCC13032 in the utilization of sulfonates and sulfonate esters as sulfur sources. Appl Environ Microbiol 71:6104–6114
    [Google Scholar]
  37. Koide T., Vencio R. Z., Gomes S. L. 2006; Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa . J Bacteriol 188:5821–5830
    [Google Scholar]
  38. Kumar C. V., Coque J. J. R., Martín J. F. 1994; Efficient transformation of the cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl Environ Microbiol 60:4086–4093
    [Google Scholar]
  39. Larisch C., Nakunst D., Huser A. T., Tauch A., Kalinowski J. 2007; The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4
    [Google Scholar]
  40. Martín J. F., Gil J. A. 1999; Corynebacteria. . In Manual of Industrial Microbiology and Biotechnology , 2nd edn. pp 379–391 Edited by Demain A. L., Davies J. E., Atlas R. M., Cohen G., Hershberger C. L., Hu W. S., Sherman D. H., Willson R. C., Wu J. H. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Martín J. F., Barreiro C., González-Lavado E., Barriuso M. 2003; Ribosomal RNA and ribosomal proteins in corynebacteria. J Biotechnol 104:41–53
    [Google Scholar]
  42. Mogk A., Homuth G., Scholz C., Kim L., Schmid F. X., Schumann W. 1997; The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis . EMBO J 16:4579–4590
    [Google Scholar]
  43. Muffler A., Bettermann S., Haushalter M., Horlein A., Neveling U., Schramm M., Sorgenfrei O. 2002; Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268
    [Google Scholar]
  44. Musatovova O., Dhandayuthapani S., Baseman J. B. 2006; Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium . J Bacteriol 188:2845–2855
    [Google Scholar]
  45. Narberhaus F., Kaser R., Nocker A., Hennecke H. 1998; A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28:315–323
    [Google Scholar]
  46. Oguiza J. A., Marcos A. T., Malumbres M., Martín J. F. 1996; Multiple sigma factor genes in Brevibacterium lactofermentum : characterization of sigA and sigB . J Bacteriol 178:550–553
    [Google Scholar]
  47. Ohnishi J., Ikeda M. 2006; Comparisons of potentials for l-lysine production among different Corynebacterium glutamicum strains. Biosci Biotechnol Biochem 70:1017–1020
    [Google Scholar]
  48. Ohnishi J., Hayashi M., Mitsuhashi S., Ikeda M. 2003; Efficient 40 °C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75
    [Google Scholar]
  49. Patek M., Krumbach K., Eggeling L., Sahm H. 1994; Leucine synthesis in Corynebacterium glutamicum : enzyme activities, structure of leuA , and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140
    [Google Scholar]
  50. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45
    [Google Scholar]
  51. Rezzonico E., Lariani S., Barretto C., Cuanoud G., Giliberti G., Delley M., Arigoni F., Pessi G. 2007; Global transcriptome analysis of the heat shock response of Bifidobacterium longum . FEMS Microbiol Lett 271:136–145
    [Google Scholar]
  52. Rodríguez G. M., Voskuil M. I., Gold B., Schoolnik G. K., Smith I. 2002; ideR , an essential gene in Mycobacterium tuberculosis : role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381
    [Google Scholar]
  53. Rodríguez-García A., Barreiro C., Santos-Beneit F., Sola-Landa A., Martín J. F. 2007; Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a Δ phoP mutant. Proteomics 7:2410–2429
    [Google Scholar]
  54. Rosen R., Ron E. Z. 2002; Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 21:244–265
    [Google Scholar]
  55. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  56. Schäfer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  57. Schreiner M. E., Riedel C., Holatko J., Patek M., Eikmanns B. J. 2006; Pyruvate : quinone oxidoreductase in Corynebacterium glutamicum : molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects. J Bacteriol 188:1341–1350
    [Google Scholar]
  58. Schumann W. 2003; The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8:207–217
    [Google Scholar]
  59. Servant P., Mazodier P. 2001; Negative regulation of the heat shock response in Streptomyces . Arch Microbiol 176:237–242
    [Google Scholar]
  60. Servant P., Grandvalet C., Mazodier P. 2000; The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus . Proc Natl Acad Sci U S A 97:3538–3543
    [Google Scholar]
  61. Silberbach M., Huser A., Kalinowski J., Puhler A., Walter B., Kramer R., Burkovski A. 2005; DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum . J Biotechnol 119:357–367
    [Google Scholar]
  62. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  63. Singh A. K., Summerfield T. C., Li H., Sherman L. A. 2006; The heat shock response in the cyanobacterium Synechocystis sp. strain PCC 6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 186:273–286
    [Google Scholar]
  64. Song T., Dove S. L., Lee K. H., Husson R. N. 2003; RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol Microbiol 50:949–959
    [Google Scholar]
  65. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138
    [Google Scholar]
  66. Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V. 2000; The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36
    [Google Scholar]
  67. Tauch A., Kaiser O., Hain T., Goesmann A., Weisshaar B., Albersmeier A., Bekel T., Bischoff N., Brune I. other authors 2005; Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682
    [Google Scholar]
  68. Uy D., Delaunay S., Germain P., Engasser J. M., Goergen J. L. 2003; Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol 104:173–184
    [Google Scholar]
  69. Ventura M., Canchaya C., Zhang Z., Bernini V., Fitzgerald G. F., van Sinderen D. 2006; How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiol Rev 30:734–759
    [Google Scholar]
  70. Weber A., Kogl S. A., Jung K. 2006; Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli . J Bacteriol 188:7165–7175
    [Google Scholar]
  71. Wehmeier L., Brockmann-Gretza O., Pisabarro A., Tauch A., Puhler A., Martín J. F., Kalinowski J. 2001; A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation. Microbiology 147:691–700
    [Google Scholar]
  72. Yang Y. H., Dudoit S., Luu P., Lin D. M., Peng V., Ngai J., Speed T. P. 2002; Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15
    [Google Scholar]
  73. Young D. B., Garbe T. R. 1991; Heat shock proteins and antigens of Mycobacterium tuberculosis . Infect Immun 59:3086–3093
    [Google Scholar]
  74. Yura T., Nakahigashi K. 1999; Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158
    [Google Scholar]
  75. Zuber U., Schumann W. 1994; CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis . J Bacteriol 176:1359–1363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.019299-0
Loading
/content/journal/micro/10.1099/mic.0.019299-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error