1887

Abstract

subspecies (MAP), the causative agent of Johne's disease in cattle and sheep, has unique iron requirements in that it is mycobactin-dependent for cultivation . The iron-dependent regulator (IdeR) is a well-characterized global regulator responsible for maintaining iron homeostasis in (MTB). We identified an orthologous segment in the MAP genome, MAP2827, with >93 % amino acid identity to MTB IdeR. Electrophoretic mobility shift assays and DNase protection assays confirmed that MAP2827 binds the 19 bp consensus motif (iron box) on the MAP genome. Sequencing of MAP2827 from multiple isolates revealed a non-synonymous change (R91G) exclusive to sheep strains. Reporter gene assays and quantitative real-time RT-PCR assays in two diverse MAP strains and in an deletion mutant of (mc155) suggested that both sheep MAP IdeR (sIdeR) and cattle MAP IdeR (cIdeR) repress transcription at high iron concentrations and relieve repression at low iron concentrations. On the other hand, (an iron storage gene) was upregulated by cIdeR when presented with MTB or the cattle MAP promoter, and was downregulated by sIdeR in the presence of MTB, or sheep or cattle MAP promoters, at high iron concentrations. The differential iron regulatory mechanisms between IdeR-regulated genes across strains may contribute to the differential growth or pathogenic characteristics of sheep and cattle MAP strains. Taken together, our study provides a possible reason for mycobactin dependency and suggests strong implications in the differential iron acquisition and storage mechanisms in MAP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031948-0
2009-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3683.html?itemId=/content/journal/micro/10.1099/mic.0.031948-0&mimeType=html&fmt=ahah

References

  1. Bannantine J. P., Hansen J. K., Paustian M. L., Amonsin A., Li L. L., Stabel J. R., Kapur V. 2004; Expression and immunogenicity of proteins encoded by sequences specific to Mycobacterium aviumsubsp. paratuberculosis . J Clin Microbiol 42:106–114
    [Google Scholar]
  2. De Voss J. J., Rutter K., Schroeder B. G., Barry C. E. III 1999; Iron acquisition and metabolism by mycobacteria. J Bacteriol 181:4443–4451
    [Google Scholar]
  3. Dussurget O., Rodriguez M., Smith I. 1996; An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. Mol Microbiol 22:535–544
    [Google Scholar]
  4. Dussurget O., Timm J., Gomez M., Gold B., Yu S., Sabol S. Z., Holmes R. K., Jacobs W. R. Jr, Smith I. 1999; Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181:3402–3408
    [Google Scholar]
  5. Faucher S. P., Porwollik S., Dozois C. M., McClelland M., Daigle F. 2006; Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A 103:1906–1911
    [Google Scholar]
  6. Gold B., Rodriguez G. M., Marras S. A., Pentecost M., Smith I. 2001; The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42:851–865
    [Google Scholar]
  7. Li L., Bannantine J. P., Zhang Q., Amonsin A., May B. J., Alt D., Banerji N., Kanjilal S., Kapur V. 2005; The complete genome sequence of Mycobacterium avium subspecies paratuberculosis . Proc Natl Acad Sci U S A 102:12344–12349
    [Google Scholar]
  8. Merighi M., Majerczak D. R., Zianni M., Tessanne K., Coplin D. L. 2006; Molecular characterization of Pantoea stewartii subsp. stewartii HrpY, a conserved response regulator of the Hrp type III secretion system, and its interaction with the hrpS promoter. J Bacteriol 188:5089–5100
    [Google Scholar]
  9. Motiwala A. S., Janagama H. K., Paustian M. L., Zhu X., Bannantine J. P., Kapur V., Sreevatsan S. 2006a; Comparative transcriptional analysis of human macrophages exposed to animal and human isolates of Mycobacterium avium subspecies paratuberculosis with diverse genotypes. Infect Immun 74:6046–6056
    [Google Scholar]
  10. Motiwala A. S., Li L., Kapur V., Sreevatsan S. 2006b; Current understanding of the genetic diversity of Mycobacterium avium subsp. paratuberculosis . Microbes Infect 8:1406–1418
    [Google Scholar]
  11. Munch R., Hiller K., Barg H., Heldt D., Linz S., Wingender E., Jahn D. 2003; prodoric: prokaryotic database of gene regulation. Nucleic Acids Res 31:266–269
    [Google Scholar]
  12. Paustian M. L., Zhu X., Sreevatsan S., Robbe-Austerman S., Kapur V., Bannantine J. P. 2008; Comparative genomic analysis of Mycobacterium avium subspecies obtained from multiple host species. BMC Genomics 9:135
    [Google Scholar]
  13. Pohl E., Holmes R. K., Hol W. G. 1999; Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. J Mol Biol 285:1145–1156
    [Google Scholar]
  14. Rodriguez G. M., Smith I. 2003; Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47:1485–1494
    [Google Scholar]
  15. Rodriguez G. M., Gold B., Gomez M., Dussurget O., Smith I. 1999; Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis . Tuber Lung Dis 79:287–298
    [Google Scholar]
  16. Rodriguez G. M., Voskuil M. I., Gold B., Schoolnik G. K., Smith I. 2002; ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381
    [Google Scholar]
  17. Talaat A. M., Howard S. T., Hale W. T., Lyons R., Garner H., Johnston S. A. 2002; Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis . Nucleic Acids Res 30:e104
    [Google Scholar]
  18. Turenne C. Y., Collins D. M., Alexander D. C., Behr M. A. 2008; Mycobacterium avium subsp. paratuberculosis and M. avium subsp. avium are independently evolved pathogenic clones of a much broader group of M. avium organisms. J Bacteriol 190:2479–2487
    [Google Scholar]
  19. Wagner D., Maser J., Lai B., Cai Z., Barry C. E. III, Honer Zu Bentrup K., Russell D. G., Bermudez L. E. 2005; Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol 174:1491–1500
    [Google Scholar]
  20. Wagner D., Maser J., Moric I., Vogt S., Kern W. V., Bermudez L. E. 2006; Elemental analysis of the Mycobacterium avium phagosome in Balb/c mouse macrophages. Biochem Biophys Res Commun 344:1346–1351
    [Google Scholar]
  21. Wandersman C., Delepelaire P. 2004; Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647
    [Google Scholar]
  22. Wheeler W. C., Hanks J. H. 1965; Utilization of external growth factors by intracellular microbes: Mycobacterium paratuberculosis and wood pigeon mycobacteria. J Bacteriol 89:889–896
    [Google Scholar]
  23. Wisedchaisri G., Holmes R. K., Hol W. G. 2004; Crystal structure of an IdeR–DNA complex reveals a conformational change in activated IdeR for base-specific interactions. J Mol Biol 342:1155–1169
    [Google Scholar]
  24. Wisedchaisri G., Chou C. J., Wu M., Roach C., Rice A. E., Holmes R. K., Beeson C., Hol W. G. 2007; Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis . Biochemistry 46:436–447
    [Google Scholar]
  25. Wu C. W., Schmoller S. K., Shin S. J., Talaat A. M. 2007; Defining the stressome of Mycobacterium avium subsp. paratuberculosis in vitro and in naturally infected cows. J Bacteriol 189:7877–7886
    [Google Scholar]
  26. Yellaboina S., Ranjan S., Vindal V., Ranjan A. 2006; Comparative analysis of iron regulated genes in mycobacteria. FEBS Lett 580:2567–2576
    [Google Scholar]
  27. Zhu X., Tu Z. J., Coussens P. M., Kapur V., Janagama H., Naser S., Sreevatsan S. 2008; Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages. Microbes Infect 10:1274–1282
    [Google Scholar]
  28. Zianni M., Tessanne K., Merighi M., Laguna R., Tabita F. R. 2006; Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech 17:103–113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031948-0
Loading
/content/journal/micro/10.1099/mic.0.031948-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error