1887

Abstract

Diamide is an artificial disulphide-generating electrophile that mimics an oxidative shift in the cellular thiol–disulphide redox state (disulphide stress). The Gram-positive bacterium senses and responds to disulphide stress through the –RsrA system, which comprises an extracytoplasmic function (ECF) sigma factor and a redox-active anti-sigma factor. Known targets that aid in the protection and recovery from disulphide stress include the thioredoxin system and genes involved in producing the major thiol buffer mycothiol. Here we determine the global response to diamide in wild-type and mutant backgrounds to understand the role of in this response and to reveal additional regulatory pathways that allow cells to cope with disulphide stress. In addition to thiol oxidation, diamide was found to cause protein misfolding and aggregation, which elicited the induction of the HspR heat-shock regulon. Although this response is -independent, does directly control Clp and Lon ATP-dependent AAA(+) proteases, which may partly explain the reduced ability of a mutant to resolubilize protein aggregates. also controls and methionine sulphoxide reductase genes, implying that –RsrA is responsible for the maintenance of both cysteine and methionine residues during oxidative stress. This work shows that the –RsrA system plays a more significant role in protein quality control than previously realized, and emphasizes the importance of controlling the cellular thiol–disulphide redox balance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037804-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1661.html?itemId=/content/journal/micro/10.1099/mic.0.037804-0&mimeType=html&fmt=ahah

References

  1. Bae J. B., Park J. H., Hahn M. Y., Kim M. S., Roe J. H. 2004; Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation. J Mol Biol 335:425–435
    [Google Scholar]
  2. Barends S., Zehl M., Bialek S., de Waal E., Traag B. A., Willemse J., Jensen O. N., Vijgenboom E., van Wezel G. P. 2010; Transfer–messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO Rep 11:119–125
    [Google Scholar]
  3. Bellier A., Mazodier P. 2004; ClgR, a novel regulator of clp and lon expression in Streptomyces. J Bacteriol 186:3238–3248
    [Google Scholar]
  4. Borovok I., Kreisberg-Zakarin R., Yanko M., Schreiber R., Myslovati M., Aslund F., Holmgren A., Cohen G., Aharonowitz Y. 2002; Streptomyces spp. contain class Ia and class II ribonucleotide reductases: expression analysis of the genes in vegetative growth. Microbiology 148:391–404
    [Google Scholar]
  5. Borovok I., Gorovitz B., Yanku M., Schreiber R., Gust B., Chater K., Aharonowitz Y., Cohen G. 2004; Alternative oxygen-dependent and oxygen-independent ribonucleotide reductases in Streptomyces: cross-regulation and physiological role in response to oxygen limitation. Mol Microbiol 54:1022–1035
    [Google Scholar]
  6. Bota D. A., Davies K. J. 2002; Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680
    [Google Scholar]
  7. Bucca G., Hindle Z., Smith C. P. 1997; Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol 179:5999–6004
    [Google Scholar]
  8. Bucca G., Brassington A. M., Schonfeld H. J., Smith C. P. 2000; The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol 38:1093–1103
    [Google Scholar]
  9. Bucca G., Brassington A. M., Hotchkiss G., Mersinias V., Smith C. P. 2003; Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 50:153–166
    [Google Scholar]
  10. Buchmeier N., Fahey R. C. 2006; The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 264:74–79
    [Google Scholar]
  11. Buchmeier N. A., Newton G. L., Fahey R. C. 2006; A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol–disulfide content and limited tolerance to stress. J Bacteriol 188:6245–6252
    [Google Scholar]
  12. Buttner M. J., Smith A. M., Bibb M. J. 1988; At least three different RNA polymerase holoenzymes direct transcription of the agarase gene ( dagA) of Streptomyces coelicolor A3(2. Cell 52:599–607
    [Google Scholar]
  13. de Crecy-Lagard V., Servant-Moisson P., Viala J., Grandvalet C., Mazodier P. 1999; Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol Microbiol 32:505–517
    [Google Scholar]
  14. Engels S., Schweitzer J. E., Ludwig C., Bott M., Schaffer S. 2004; clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol Microbiol 52:285–302
    [Google Scholar]
  15. Engels S., Ludwig C., Schweitzer J. E., Mack C., Bott M., Schaffer S. 2005; The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57:576–591
    [Google Scholar]
  16. Ezraty B., Aussel L., Barras F. 2005; Methionine sulfoxide reductases in prokaryotes. Biochim Biophys Acta 1703:221–229
    [Google Scholar]
  17. Freeman M. L., Borrelli M. J., Syed K., Senisterra G., Stafford D. M., Lepock J. R. 1995; Characterization of a signal generated by oxidation of protein thiols that activates the heat shock transcription factor. J Cell Physiol 164:356–366
    [Google Scholar]
  18. Furukawa Y., Torres A. S., O'Halloran T. V. 2004; Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881
    [Google Scholar]
  19. Gallardo-Madueno R., Leal J. F., Dorado G., Holmgren A., Lopez-Barea J., Pueyo C. 1998; In vivo transcription of nrdAB operon and of grxA and fpg genes is triggered in Escherichia coli lacking both thioredoxin and glutaredoxin 1 or thioredoxin and glutathione, respectively. J Biol Chem 273:18382–18388
    [Google Scholar]
  20. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. 2000; Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257
    [Google Scholar]
  21. Goloubinoff P., Mogk A., Zvi A. P., Tomoyasu T., Bukau B. 1999; Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A 96:13732–13737
    [Google Scholar]
  22. Grinberg I., Shteinberg T., Gorovitz B., Aharonowitz Y., Cohen G., Borovok I. 2006; The Streptomyces NrdR transcriptional regulator is a Zn ribbon/ATP cone protein that binds to the promoter regions of class Ia and class II ribonucleotide reductase operons. J Bacteriol 188:7635–7644
    [Google Scholar]
  23. Kang J. G., Paget M. S., Seok Y. J., Hahn M. Y., Bae J. B., Hahn J. S., Kleanthous C., Buttner M. J., Roe J. H. 1999; RsrA, an anti-sigma factor regulated by redox change. EMBO J 18:4292–4298
    [Google Scholar]
  24. Kidd S. P., Potter A. J., Apicella M. A., Jennings M. P., McEwan A. G. 2005; NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family. Mol Microbiol 57:1676–1689
    [Google Scholar]
  25. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: The John Innes Foundation;
  26. Kim M. S., Hahn M. Y., Cho Y., Cho S. N., Roe J. H. 2009; Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of σR in actinomycetes. Mol Microbiol 73:815–825
    [Google Scholar]
  27. Leichert L. I., Scharf C., Hecker M. 2003; Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185:1967–1975
    [Google Scholar]
  28. Li P. P., Nakanishi A., Clark S. W., Kasamatsu H. 2002; Formation of transitory intrachain and interchain disulfide bonds accompanies the folding and oligomerization of simian virus 40 Vp1 in the cytoplasm. Proc Natl Acad Sci U S A 99:1353–1358
    [Google Scholar]
  29. Li W., Bottrill A. R., Bibb M. J., Buttner M. J., Paget M. S., Kleanthous C. 2003; The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. J Mol Biol 333:461–472
    [Google Scholar]
  30. Luo S., Levine R. L. 2009; Methionine in proteins defends against oxidative stress. FASEB J 23:464–472
    [Google Scholar]
  31. Manganelli R., Voskuil M. I., Schoolnik G. K., Dubnau E., Gomez M., Smith I. 2002; Role of the extracytoplasmic-function σ factor σH in Mycobacterium tuberculosis global gene expression. Mol Microbiol 45:365–374
    [Google Scholar]
  32. Mehra S., Kaushal D. 2009; Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor σH. J Bacteriol 191:3965–3980
    [Google Scholar]
  33. Newell K. V., Thomas D. P., Brekasis D., Paget M. S. 2006; The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol Microbiol 60:687–696
    [Google Scholar]
  34. Newton G. L., Av-Gay Y., Fahey R. C. 2000; A novel mycothiol-dependent detoxification pathway in Mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39:10739–10746
    [Google Scholar]
  35. Newton G. L., Koledin T., Gorovitz B., Rawat M., Fahey R. C., Av-Gay Y. 2003; The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis ( mshA. J Bacteriol 185:3476–3479
    [Google Scholar]
  36. O'Connor T. J., Kanellis P., Nodwell J. R. 2002; The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol 45:45–57
    [Google Scholar]
  37. Owen G. A., Pascoe B., Kallifidas D., Paget M. S. 2007; Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves Zur and σR. J Bacteriol 189:4078–4086
    [Google Scholar]
  38. Paget M. S., Buttner M. J. 2003; Thiol-based regulatory switches. Annu Rev Genet 37:91–121
    [Google Scholar]
  39. Paget M. S., Kang J. G., Roe J. H., Buttner M. J. 1998; σR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2. EMBO J 17:5776–5782
    [Google Scholar]
  40. Paget M. S., Bae J. B., Hahn M. Y., Li W., Kleanthous C., Roe J. H., Buttner M. J. 2001a; Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch. Mol Microbiol 39:1036–1047
    [Google Scholar]
  41. Paget M. S., Molle V., Cohen G., Aharonowitz Y., Buttner M. J. 2001b; Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the σR regulon. Mol Microbiol 42:1007–1020
    [Google Scholar]
  42. Park J. H., Roe J. H. 2008; Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and σR in Streptomyces coelicolor. Mol Microbiol 68:861–870
    [Google Scholar]
  43. Porankiewicz J., Wang J., Clarke A. K. 1999; New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32:449–458
    [Google Scholar]
  44. Schmidt R., Bukau B., Mogk A. 2009; Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res Microbiol 160:629–636
    [Google Scholar]
  45. Sobczyk A., Bellier A., Viala J., Mazodier P. 2002; The lon gene, encoding an ATP-dependent protease, is a novel member of the HAIR/HspR stress-response regulon in actinomycetes. Microbiology 148:1931–1937
    [Google Scholar]
  46. Tomoyasu T., Mogk A., Langen H., Goloubinoff P., Bukau B. 2001; Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413
    [Google Scholar]
  47. Viala J., Mazodier P. 2003; The ATPase ClpX is conditionally involved in the morphological differentiation of Streptomyces lividans. Mol Genet Genomics 268:563–569
    [Google Scholar]
  48. Viala J., Rapoport G., Mazodier P. 2000; The clpP multigenic family in Streptomyces lividans: conditional expression of the clpP3 clpP4 operon is controlled by PopR, a novel transcriptional activator. Mol Microbiol 38:602–612
    [Google Scholar]
  49. Vitreschak A. G., Rodionov D. A., Mironov A. A., Gelfand M. S. 2002; Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151
    [Google Scholar]
  50. Wickner S., Maurizi M. R., Gottesman S. 1999; Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893
    [Google Scholar]
  51. Winkler W. C., Cohen-Chalamish S., Breaker R. R. 2002; An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99:15908–15913
    [Google Scholar]
  52. Winter J., Linke K., Jatzek A., Jakob U. 2005; Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392
    [Google Scholar]
  53. Zdanowski K., Doughty P., Jakimowicz P., O'Hara L., Buttner M. J., Paget M. S., Kleanthous C. 2006; Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor. Biochemistry 45:8294–8300
    [Google Scholar]
  54. Zhang Y., Zuber P. 2007; Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity. J Bacteriol 189:7669–7680
    [Google Scholar]
  55. Zhao K., Liu M., Burgess R. R. 2005; The global transcriptional response of Escherichia coli to induced σ32 protein involves σ32 regulon activation followed by inactivation and degradation of σ32 in vivo. J Biol Chem 280:17758–17768
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037804-0
Loading
/content/journal/micro/10.1099/mic.0.037804-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error