1887

Abstract

The fungal cell wall plays a crucial role in host–pathogen interactions. Its formation is the result of the coordinated activity of several extracellular enzymes, which assemble the constituents, and remodel and hydrolyse them in the extracellular space. Phr1 and Phr2 proteins belong to family GH72 of the -(1,3)-glucanosyltransferases and play a crucial role in cell wall assembly. and , homologues of , are differently regulated by extracellular pH. is expressed when ambient pH is 5.5 or higher, whereas has the reverse expression pattern. Their deletion causes a pH-conditional defect in morphogenesis and virulence. In this work we explored whether deletion affects the ability of to adhere to and invade human epithelia. null mutants exhibited a marked reduction in adhesion to both abiotic surfaces and epithelial cell monolayers. In addition, the mutant was unable to penetrate and invade reconstituted human epithelia. Transcription profiling of selected hyphal-specific and adhesin-encoding genes indicated that in the null mutant, and transcript levels were similarly reduced in both adhesion and suspension conditions. These results, combined with microscopy analysis of the septum position, suggest that is not required for the induction of hyphal development but plays a key role in the maintenance of hyphal growth. Thus, the -(1,3)-glucan processing catalysed by Phr1p is of fundamental importance in the maintenance of the morphological state on which the adhesive and invasive properties of greatly depend.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038000-0
2010-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2484.html?itemId=/content/journal/micro/10.1099/mic.0.038000-0&mimeType=html&fmt=ahah

References

  1. Bensen E. S., Martin S. J., Li M., Berman J., Davis D. A. 2004; Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54:1335–1351
    [Google Scholar]
  2. Birse C. E., Irwin M. Y., Fonzi W. A., Sypherd P. S. 1993; Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61:3648–3655
    [Google Scholar]
  3. Calderone R. A., Fonzi W. A. 2001; Virulence factors of Candida albicans. Trends Microbiol 9:327–335
    [Google Scholar]
  4. Chaffin W. L. 2008; Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544
    [Google Scholar]
  5. Chaffin W. L., Lopez-Ribot J. L., Casanova M., Gozalbo D., Martinez J. P. 1998; Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180
    [Google Scholar]
  6. Coleman D. A., Oh S. H., Zhao X., Zhao H., Hutchins J. T., Vernachio J. H., Patti J. M., Hoyer L. L. 2009; Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods 78:71–78
    [Google Scholar]
  7. Davis D., Wilson R. B., Mitchell A. P. 2000; RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20:971–978
    [Google Scholar]
  8. De Bernardis F., Muhlschlegel F. A., Cassone A., Fonzi W. A. 1998; The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66:3317–3325
    [Google Scholar]
  9. de Groot P. W., de Boer A. D., Cunningham J., Dekker H. L., de Jong L., Hellingwerf K. J., de Koster C., Klis F. M. 2004; Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965
    [Google Scholar]
  10. De Groot P. W., Ram A. F., Klis F. M. 2005; Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675
    [Google Scholar]
  11. Dieterich C., Schandar M., Noll M., Johannes F. J., Brunner H., Graeve T., Rupp S. 2002; In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology 148:497–506
    [Google Scholar]
  12. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36
    [Google Scholar]
  13. Eckert S. E., Heinz W. J., Zakikhany K., Thewes S., Haynes K., Hube B., Muhlschlegel F. A. 2007; PGA4, a GAS homologue from Candida albicans, is up-regulated early in infection processes. Fungal Genet Biol 44:368–377
    [Google Scholar]
  14. Fonzi W. A. 1999; PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-glucans. J Bacteriol 181:7070–7079
    [Google Scholar]
  15. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728
    [Google Scholar]
  16. Garcia R., Bermejo C., Grau C., Perez R., Rodriguez-Pena J. M., Francois J., Nombela C., Arroyo J. 2004; The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279:15183–15195
    [Google Scholar]
  17. Grubb S. E., Murdoch C., Sudbery P. E., Saville S. P., Lopez-Ribot J. L., Thornhill M. H. 2008; Candida albicans–endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis. Infect Immun 76:4370–4377
    [Google Scholar]
  18. Hernandez R., Rupp S. 2008; Human epithelial model systems for the study of Candida infections in vitro: Part II. Histologic methods for studying fungal invasion. In Host–Pathogen Interactions: Methods in Molecular Biology pp 105–120 Edited by Rupp S., Sohn K. Towota, NJ: Humana Press;
    [Google Scholar]
  19. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S. 1998; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459
    [Google Scholar]
  20. Hurtado-Guerrero R., Schuttelkopf A. W., Mouyna I., Ibrahim A. F., Shepherd S., Fontaine T., Latge J. P., van Aalten D. M. 2009; Molecular mechanisms of yeast cell wall glucan remodelling. J Biol Chem 284:8461–8469
    [Google Scholar]
  21. Kang C. M., Jiang Y. W. 2005; Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast. Yeast 22:79–90
    [Google Scholar]
  22. Lagorce A., Hauser N. C., Labourdette D., Rodriguez C., Martin-Yken H., Arroyo J., Hoheisel J. D., Francois J. 2003; Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357
    [Google Scholar]
  23. Li F., Palecek S. P. 2003; EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2:1266–1273
    [Google Scholar]
  24. Li F., Palecek S. P. 2008; Distinct domains of the Candida albicans adhesin Eap1p mediate cell–cell and cell–substrate interactions. Microbiology 154:1193–1203
    [Google Scholar]
  25. Li F., Svarovsky M. J., Karlsson A. J., Wagner J. P., Marchillo K., Oshel P., Andes D., Palecek S. P. 2007; Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 6:931–939
    [Google Scholar]
  26. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408
    [Google Scholar]
  27. Lotz H., Sohn K., Brunner H., Muhlschlegel F. A., Rupp S. 2004; RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryot Cell 3:776–784
    [Google Scholar]
  28. Mavor A. L., Thewes S., Hube B. 2005; Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 6:863–874
    [Google Scholar]
  29. Mio T., Yamada-Okabe T., Yabe T., Nakajima T., Arisawa M., Yamada-Okabe H. 1997; Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. J Bacteriol 179:2363–2372
    [Google Scholar]
  30. Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latge J. P. 2000; Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889
    [Google Scholar]
  31. Muhlschlegel F. A., Fonzi W. A. 1997; PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967
    [Google Scholar]
  32. Nobile C. J., Mitchell A. P. 2005; Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155
    [Google Scholar]
  33. Nobile C. J., Andes D. R., Nett J. E., Smith F. J., Yue F., Phan Q. T., Edwards J. E., Filler S. G., Mitchell A. P. 2006; Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63
    [Google Scholar]
  34. Oh S. H., Cheng G., Nuessen J. A., Jajko R., Yeater K. M., Zhao X., Pujol C., Soll D. R., Hoyer L. L. 2005; Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673–681
    [Google Scholar]
  35. Popolo L., Vai M. 1998; Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant. J Bacteriol 180:163–166
    [Google Scholar]
  36. Popolo L., Vai M., Gatti E., Porello S., Bonfante P., Balestrini R., Alberghina L. 1993; Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae GPI-anchored protein gp115 in morphogenesis and cell separation. J Bacteriol 175:1879–1885
    [Google Scholar]
  37. Popolo L., Gilardelli D., Bonfante P., Vai M. 1997; Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J Bacteriol 179:463–469
    [Google Scholar]
  38. Popolo L., Gualtieri T., Ragni E. 2001; The yeast cell-wall salvage pathway. Med Mycol 39 (Suppl. 1):111–121
    [Google Scholar]
  39. Popolo L., Ragni E., Carotti C., Palomares O., Aardema R., Back J. W., Dekker H. L., de Koning L. J., de Jong L., de Koster C. G. 2008; Disulfide bond structure and domain organization of yeast β(1,3)-glucanosyltransferases involved in cell wall biogenesis. J Biol Chem 283:18553–18565
    [Google Scholar]
  40. Porta A., Ramon A. M., Fonzi W. A. 1999; PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol 181:7516–7523
    [Google Scholar]
  41. Ragni E., Fontaine T., Gissi C., Latge J. P., Popolo L. 2007a; The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24:297–308
    [Google Scholar]
  42. Ragni E., Coluccio A., Rolli E., Rodriguez-Pena J. M., Colasante G., Arroyo J., Neiman A. M., Popolo L. 2007b; GAS2 and GAS4,a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 6:302–316
    [Google Scholar]
  43. Ram A. F., Kapteyn J. C., Montijn R. C., Caro L. H., Douwes J. E., Baginsky W., Mazur P., van den Ende H., Klis F. M. 1998; Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180:1418–1424
    [Google Scholar]
  44. Ramon A. M., Porta A., Fonzi W. A. 1999; Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 181:7524–7530
    [Google Scholar]
  45. Rolli E., Ragni E., Calderon J., Porello S., Fascio U., Popolo L. 2009; Immobilization of the glycosylphosphatidylinositol-anchored Gas1 protein into the chitin ring and septum is required for proper morphogenesis in yeast. Mol Biol Cell 20:4856–4870
    [Google Scholar]
  46. Rupniak H. T., Rowlatt C., Lane E. B., Steele J. G., Trejdosiewicz L. K., Laskiewicz B., Povey S., Hill B. T. 1985; Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J Natl Cancer Inst 75:621–635
    [Google Scholar]
  47. Saporito-Irwin S. M., Birse C. E., Sypherd P. S., Fonzi W. A. 1995; PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613
    [Google Scholar]
  48. Sharkey L. L., McNemar M. D., Saporito-Irwin S. M., Sypherd P. S., Fonzi W. A. 1999; HWP1 functions in the morphological development of Candida albicans downstream ofEFG1, TUP1,and RBF1. J Bacteriol 181:5273–5279
    [Google Scholar]
  49. Sharkey L. L., Liao W. L., Ghosh A. K., Fonzi W. A. 2005; Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology 151:1061–1071
    [Google Scholar]
  50. Staab J. F., Bradway S. D., Fidel P. L., Sundstrom P. 1999; Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538
    [Google Scholar]
  51. Tsuchimori N., Sharkey L. L., Fonzi W. A., French S. W., Edwards J. E. Jr, Filler S. G. 2000; Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect Immun 68:1997–2002
    [Google Scholar]
  52. Urban C., Sohn K., Lottspeich F., Brunner H., Rupp S. 2003; Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett 544:228–235
    [Google Scholar]
  53. Verstrepen K. J., Klis F. M. 2006; Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15
    [Google Scholar]
  54. Wheeler R. T., Fink G. R. 2006; A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2:e35
    [Google Scholar]
  55. Wheeler R. T., Kombe D., Agarwala S. D., Fink G. R. 2008; Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog 4:e1000227
    [Google Scholar]
  56. Wilson D., Thewes S., Zakikhany K., Fradin C., Albrecht A., Almeida R., Brunke S., Grosse K., Martin R. other authors 2009; Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9:688–700
    [Google Scholar]
  57. Zakikhany K., Naglik J. R., Schmidt-Westhausen A., Holland G., Schaller M., Hube B. 2007; In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9:2938–2954
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038000-0
Loading
/content/journal/micro/10.1099/mic.0.038000-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error