1887

Abstract

Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.

Funding
This study was supported by the:
  • Research Council of Norway
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052571-0
2011-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3256.html?itemId=/content/journal/micro/10.1099/mic.0.052571-0&mimeType=html&fmt=ahah

References

  1. Abachin E., Poyart C., Pellegrini E., Milohanic E., Fiedler F., Berche P., Trieu-Cuot P. ( 2002). Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes . Mol Microbiol 43:1–14 [View Article][PubMed]
    [Google Scholar]
  2. Birri D. J., Brede D. A., Forberg T., Holo H., Nes I. F. ( 2010). Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants. Appl Environ Microbiol 76:483–492 [View Article][PubMed]
    [Google Scholar]
  3. Borrero J., Jiménez J. J., Gútiez L., Herranz C., Cintas L. M., Hernández P. E. ( 2011a). Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis . Appl Microbiol Biotechnol 89:131–143 [View Article][PubMed]
    [Google Scholar]
  4. Borrero J., Brede D. A., Skaugen M., Diep D. B., Herranz C., Nes I. F., Cintas L. M., Hernández P. E. ( 2011b). Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol 77:369–373 [View Article][PubMed]
    [Google Scholar]
  5. Campelo A. B., Gaspar P., Roces C., Rodríguez A., Kok J., Kuipers O. P., Neves A. R., Martínez B. ( 2011). The Lcn972-bacteriocin plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis . Appl Environ Microbiol http://dx.doi.org/10.1128/AEM.06107-11 [View Article][PubMed]
    [Google Scholar]
  6. Collins B., Curtis N., Cotter P. D., Hill C., Ross R. P. ( 2010). The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother 54:4416–4423 [View Article][PubMed]
    [Google Scholar]
  7. Cotter P. D., Hill C., Ross R. P. ( 2005). Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788 [View Article][PubMed]
    [Google Scholar]
  8. Criado R., Diep D. B., Aakra A., Gutiérrez J., Nes I. F., Hernández P. E., Cintas L. M. ( 2006). Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bacteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. Appl Environ Microbiol 72:6653–6666 [View Article][PubMed]
    [Google Scholar]
  9. Dalet K., Briand C., Cenatiempo Y., Héchard Y. ( 2000). The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443 [View Article][PubMed]
    [Google Scholar]
  10. Dalet K., Cenatiempo Y., Cossart P., Héchard Y. European Listeria Genome Consortium ( 2001). A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269[PubMed]
    [Google Scholar]
  11. de Jong A., van Heel A. J., Kok J., Kuipers O. P. ( 2010). BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res 38:Web Server issueW647–W651 [View Article][PubMed]
    [Google Scholar]
  12. De Vuyst L., Leroy F. ( 2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199 [View Article][PubMed]
    [Google Scholar]
  13. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V. et al. & other authors ( 2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:Web Server issueW465–W469 [View Article][PubMed]
    [Google Scholar]
  14. Diaz M., Valdivia E., Martínez-Bueno M., Fernández M., Soler-González A. S., Ramírez-Rodrigo H., Maqueda M. ( 2003). Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl Environ Microbiol 69:1229–1236 [View Article][PubMed]
    [Google Scholar]
  15. Diep D. B., Håvarstein L. S., Nes I. F. ( 1995). A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639 [View Article][PubMed]
    [Google Scholar]
  16. Diep D. B., Godager L., Brede D., Nes I. F. ( 2006). Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology 152:1649–1659 [View Article][PubMed]
    [Google Scholar]
  17. Diep D. B., Skaugen M., Salehian Z., Holo H., Nes I. F. ( 2007). Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104:2384–2389 [View Article][PubMed]
    [Google Scholar]
  18. Dirix G., Monsieurs P., Marchal K., Vanderleyden J., Michiels J. ( 2004). Screening genomes of Gram-positive bacteria for double-glycine-motif-containing peptides. Microbiology 150:1121–1126 [View Article][PubMed]
    [Google Scholar]
  19. Drider D., Fimland G., Héchard Y., McMullen L. M., Prévost H. ( 2006). The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582 [View Article][PubMed]
    [Google Scholar]
  20. Eijsink V. G., Skeie M., Middelhoven P. H., Brurberg M. B., Nes I. F. ( 1998). Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281[PubMed]
    [Google Scholar]
  21. Field D., Connor P. M., Cotter P. D., Hill C., Ross R. P. ( 2008). The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol Microbiol 69:218–230 [View Article][PubMed]
    [Google Scholar]
  22. Fimland G., Jack R., Jung G., Nes I. F., Nissen-Meyer J. ( 1998). The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C terminus. Appl Environ Microbiol 64:5057–5060[PubMed]
    [Google Scholar]
  23. Fimland G., Eijsink V. G., Nissen-Meyer J. ( 2002a). Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148:3661–3670[PubMed]
    [Google Scholar]
  24. Fimland G., Eijsink V. G., Nissen-Meyer J. ( 2002b). Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41:9508–9515 [View Article][PubMed]
    [Google Scholar]
  25. Fimland G., Pirneskoski J., Kaewsrichan J., Jutila A., Kristiansen P. E., Kinnunen P. K., Nissen-Meyer J. ( 2006). Mutational analysis and membrane-interactions of the β-sheet-like N-terminal domain of the pediocin-like antimicrobial peptide sakacin P. Biochim Biophys Acta 1764:1132–1140[PubMed] [CrossRef]
    [Google Scholar]
  26. Fregeau Gallagher N. L., Sailer M., Niemczura W. P., Nakashima T. T., Stiles M. E., Vederas J. C. ( 1997). Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072 [View Article][PubMed]
    [Google Scholar]
  27. Gajic O., Buist G., Kojic M., Topisirovic L., Kuipers O. P., Kok J. ( 2003). Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J Biol Chem 278:34291–34298 [View Article][PubMed]
    [Google Scholar]
  28. Gálvez A., Abriouel H., López R. L., Ben Omar N. ( 2007). Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70 [View Article][PubMed]
    [Google Scholar]
  29. Gillor O., Ghazaryan L. ( 2007). Recent advances in bacteriocin application as antimicrobials. Recent Pat Antiinfect Drug Discov 2:115–122 [View Article][PubMed]
    [Google Scholar]
  30. Gravesen A., Jydegaard Axelsen A. M., Mendes da Silva J., Hansen T. B., Knøchel S. ( 2002a). Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes . Appl Environ Microbiol 68:756–764 [View Article][PubMed]
    [Google Scholar]
  31. Gravesen A., Ramnath M., Rechinger K. B., Andersen N., Jänsch L., Héchard Y., Hastings J. W., Knøchel S. ( 2002b). High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes . Microbiology 148:2361–2369[PubMed]
    [Google Scholar]
  32. Gravesen A., Kallipolitis B., Holmstrøm K., Høiby P. E., Ramnath M., Knøchel S. ( 2004). pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol 70:1669–1679 [View Article][PubMed]
    [Google Scholar]
  33. Guiral S., Mitchell T. J., Martin B., Claverys J. P. ( 2005). Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci U S A 102:8710–8715 [View Article][PubMed]
    [Google Scholar]
  34. Hancock R. E., Chapple D. S. ( 1999). Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323[PubMed]
    [Google Scholar]
  35. Haugen H. S., Fimland G., Nissen-Meyer J., Kristiansen P. E. ( 2005). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A. Biochemistry 44:16149–16157 [View Article][PubMed]
    [Google Scholar]
  36. Haugen H. S., Kristiansen P. E., Fimland G., Nissen-Meyer J. ( 2008). Mutational analysis of the class IIa bacteriocin curvacin A and its orientation in target cell membranes. Appl Environ Microbiol 74:6766–6773 [View Article][PubMed]
    [Google Scholar]
  37. Haugen H. S., Fimland G., Nissen-Meyer J. ( 2011). Mutational analysis of residues in the helical region of the class IIa bacteriocin pediocin PA-1. Appl Environ Microbiol 77:1966–1972 [View Article][PubMed]
    [Google Scholar]
  38. Héchard Y., Pelletier C., Cenatiempo Y., Frère J. ( 2001). Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580[PubMed]
    [Google Scholar]
  39. Holo H., Nilssen O., Nes I. F. ( 1991). Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 173:3879–3887[PubMed]
    [Google Scholar]
  40. Hu C. B., Malaphan W., Zendo T., Nakayama J., Sonomoto K. ( 2010). Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76:4542–4545 [View Article][PubMed]
    [Google Scholar]
  41. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J. ( 2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119 [View Article][PubMed]
    [Google Scholar]
  42. Jack R. W., Tagg J. R., Ray B. ( 1995). Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200[PubMed]
    [Google Scholar]
  43. Johnsen L., Fimland G., Nissen-Meyer J. ( 2005). The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280:9243–9250 [View Article][PubMed]
    [Google Scholar]
  44. Kelly W. J., Asmundson R. V., Huang C. M. ( 1996). Characterisation of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum . J Appl Bacteriol 81:657–662
    [Google Scholar]
  45. Kemperman R., Kuipers A., Karsens H., Nauta A., Kuipers O., Kok J. ( 2003). Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol 69:1589–1597 [View Article][PubMed]
    [Google Scholar]
  46. Kjos M., Nes I. F., Diep D. B. ( 2009). Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology 155:2949–2961 [View Article][PubMed]
    [Google Scholar]
  47. Kjos M., Salehian Z., Nes I. F., Diep D. B. ( 2010). An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192:5906–5913 [View Article][PubMed]
    [Google Scholar]
  48. Kjos M., Nes I. F., Diep D. B. ( 2011). Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl Environ Microbiol 77:3335–3342 [View Article][PubMed]
    [Google Scholar]
  49. Leisner M., Stingl K., Frey E., Maier B. ( 2008). Stochastic switching to competence. Curr Opin Microbiol 11:553–559 [View Article][PubMed]
    [Google Scholar]
  50. Lux T., Nuhn M., Hakenbeck R., Reichmann P. ( 2007). Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae . J Bacteriol 189:7741–7751 [View Article][PubMed]
    [Google Scholar]
  51. McBride S. M., Sonenshein A. L. ( 2011). Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile . Infect Immun 79:167–176 [View Article][PubMed]
    [Google Scholar]
  52. Miller K. W., Schamber R., Chen Y., Ray B. ( 1998). Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon. Appl Environ Microbiol 64:14–20[PubMed]
    [Google Scholar]
  53. Møretrø T., Naterstad K., Wang E., Aasen I. M., Chaillou S., Zagorec M., Axelsson L. ( 2005). Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol 156:949–960 [View Article][PubMed]
    [Google Scholar]
  54. Naghmouchi K., Kheadr E., Lacroix C., Fliss I. ( 2007). Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes . Food Microbiol 24:718–727 [View Article][PubMed]
    [Google Scholar]
  55. Navarro L., Rojo-Bezares B., Sáenz Y., Díez L., Zarazaga M., Ruiz-Larrea F., Torres C. ( 2008). Comparative study of the pln locus of the quorum-sensing regulated bacteriocin-producing L. plantarum J51 strain. Int J Food Microbiol 128:390–394 [View Article][PubMed]
    [Google Scholar]
  56. Nes I. F., Yoon S.-S., Diep D. B. ( 2007). Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol 16:675–690
    [Google Scholar]
  57. Nissen-Meyer J., Rogne P., Oppegård C., Haugen H. S., Kristiansen P. E. ( 2009). Structure–function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37 [View Article][PubMed]
    [Google Scholar]
  58. Oman T. J., Boettcher J. M., Wang H., Okalibe X. N., van der Donk W. A. ( 2011). Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7:78–80 [View Article][PubMed]
    [Google Scholar]
  59. Oppegård C., Fimland G., Thorbaek L., Nissen-Meyer J. ( 2007). Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis. Appl Environ Microbiol 73:2931–2938 [View Article][PubMed]
    [Google Scholar]
  60. Oppegård C., Schmidt J., Kristiansen P. E., Nissen-Meyer J. ( 2008). Mutational analysis of putative helix-helix interacting GxxxG-motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G. Biochemistry 47:5242–5249 [View Article][PubMed]
    [Google Scholar]
  61. Oppegård C., Emanuelsen L., Thorbek L., Fimland G., Nissen-Meyer J. ( 2010). The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin G. Appl Environ Microbiol 76:1267–1273 [View Article][PubMed]
    [Google Scholar]
  62. Opsata M., Nes I. F., Holo H. ( 2010). Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. BMC Microbiol 10:224 [View Article][PubMed]
    [Google Scholar]
  63. Pei J., Grishin N. V. ( 2001). Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem Sci 26:275–277 [View Article][PubMed]
    [Google Scholar]
  64. Pei J., Mitchell D. A., Dixon J. E., Grishin N. V. ( 2011). Expansion of type II CAAX proteases reveals evolutionary origin of γ-secretase subunit APH-1. J Mol Biol 410:18–26 [View Article][PubMed]
    [Google Scholar]
  65. Piper C., Cotter P. D., Ross R. P., Hill C. ( 2009). Discovery of medically significant lantibiotics. Curr Drug Discov Technol 6:1–18 [View Article][PubMed]
    [Google Scholar]
  66. Postma P. W., Lengeler J. W., Jacobson G. R. ( 1993). Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594[PubMed]
    [Google Scholar]
  67. Quadri L. E., Yan L. Z., Stiles M. E., Vederas J. C. ( 1997). Effect of amino acid substitutions on the activity of carnobacteriocin B2. Overproduction of the antimicrobial peptide, its engineered variants, and its precursor in Escherichia coli . J Biol Chem 272:3384–3388 [View Article][PubMed]
    [Google Scholar]
  68. Ramnath M., Beukes M., Tamura K., Hastings J. W. ( 2000). Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101 [View Article][PubMed]
    [Google Scholar]
  69. Ramnath M., Arous S., Gravesen A., Hastings J. W., Héchard Y. ( 2004). Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis . Microbiology 150:2663–2668 [View Article][PubMed]
    [Google Scholar]
  70. Rea M. C., Dobson A., O’Sullivan O., Crispie F., Fouhy F., Cotter P. D., Shanahan F., Kiely B., Hill C., Ross R. P. ( 2011). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A 108:Suppl. 14639–4644 [View Article][PubMed]
    [Google Scholar]
  71. Robichon D., Gouin E., Débarbouillé M., Cossart P., Cenatiempo Y., Héchard Y. ( 1997). The rpoN54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides . J Bacteriol 179:7591–7594[PubMed]
    [Google Scholar]
  72. Saier M. H., Hvorup R. N., Barabote R. D. ( 2005). Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans 33:220–224 [View Article][PubMed]
    [Google Scholar]
  73. Sedgley C. M., Clewell D. B., Flannagan S. E. ( 2009). Plasmid pAMS1-encoded, bacteriocin-related “siblicide” in Enterococcus faecalis . J Bacteriol 191:3183–3188 [View Article][PubMed]
    [Google Scholar]
  74. Soliman W., Wang L., Bhattacharjee S., Kaur K. ( 2011). Structure–activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins. J Med Chem 54:2399–2408 [View Article][PubMed]
    [Google Scholar]
  75. Sprules T., Kawulka K. E., Vederas J. C. ( 2004). NMR solution structure of ImB2, a protein conferring immunity to antimicrobial activity of the type IIa bacteriocin, carnobacteriocin B2. Biochemistry 43:11740–11749 [View Article][PubMed]
    [Google Scholar]
  76. Stepper J., Shastri S., Loo T. S., Preston J. C., Novak P., Man P., Moore C. H., Havlíček V., Patchett M. L., Norris G. E. ( 2011). Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett 585:645–650 [View Article][PubMed]
    [Google Scholar]
  77. Tessema G. T., Møretrø T., Kohler A., Axelsson L., Naterstad K. ( 2009). Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Appl Environ Microbiol 75:6973–6980 [View Article][PubMed]
    [Google Scholar]
  78. Tominaga T., Hatakeyama Y. ( 2006). Determination of essential and variable residues in pediocin PA-1 by NNK scanning. Appl Environ Microbiol 72:1141–1147 [View Article][PubMed]
    [Google Scholar]
  79. Tominaga T., Hatakeyama Y. ( 2007). Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl Environ Microbiol 73:5292–5299 [View Article][PubMed]
    [Google Scholar]
  80. Uteng M., Hauge H. H., Markwick P. R., Fimland G., Mantzilas D., Nissen-Meyer J., Muhle-Goll C. ( 2003). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426 [View Article][PubMed]
    [Google Scholar]
  81. Vadyvaloo V., Hastings J. W., van der Merwe M. J., Rautenbach M. ( 2002). Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68:5223–5230 [View Article][PubMed]
    [Google Scholar]
  82. Vadyvaloo V., Snoep J. L., Hastings J. W., Rautenbach M. ( 2004a). Physiological implications of class IIa bacteriocin resistance in Listeria monocytogenes strains. Microbiology 150:335–340 [View Article][PubMed]
    [Google Scholar]
  83. Vadyvaloo V., Arous S., Gravesen A., Héchard Y., Chauhan-Haubrock R., Hastings J. W., Rautenbach M. ( 2004b). Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150:3025–3033 [View Article][PubMed]
    [Google Scholar]
  84. Venema K., Haverkort R. E., Abee T., Haandrikman A. J., Leenhouts K. J., de Leij L., Venema G., Kok J. ( 1994). Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol 14:521–532 [View Article][PubMed]
    [Google Scholar]
  85. Vu-Khac H., Miller K. W. ( 2009). Regulation of mannose phosphotransferase system permease and virulence gene expression in Listeria monocytogenes by the . transporter. Appl Environ Microbiol 75:6671–6678 [View Article][PubMed]
    [Google Scholar]
  86. Xue J., Miller K. W. ( 2007). Regulation of the mpt operon in Listeria innocua by the ManR protein. Appl Environ Microbiol 73:5648–5652 [View Article][PubMed]
    [Google Scholar]
  87. Yan L. Z., Gibbs A. C., Stiles M. E., Wishart D. S., Vederas J. C. ( 2000). Analogues of bacteriocins: antimicrobial specificity and interactions of leucocin A with its enantiomer, carnobacteriocin B2, and truncated derivatives. J Med Chem 43:4579–4581 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052571-0
Loading
/content/journal/micro/10.1099/mic.0.052571-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error