1887

Abstract

The hypersecreting mutant RUT-C30 (ATCC 56765) is one of the most widely used strains of filamentous fungi for the production of cellulolytic enzymes and recombinant proteins, and for academic research. The strain was obtained after three rounds of random mutagenesis of the wild-type QM6a in a screening program focused on high cellulase production and catabolite derepression. Whereas RUT-C30 achieves outstanding levels of protein secretion and high cellulolytic activity in comparison to the wild-type QM6a, recombinant protein production has been less successful. Here, we bring together and discuss the results from biochemical-, microscopic-, genomic-, transcriptomic-, glycomic- and proteomic-based research on the RUT-C30 strain published over the last 30 years.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054031-0
2012-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/58.html?itemId=/content/journal/micro/10.1099/mic.0.054031-0&mimeType=html&fmt=ahah

References

  1. Arvas M., Pakula T., Lanthaler K., Saloheimo M., Valkonen M., Suortti T., Robson G., Penttilä M. ( 2006). Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae . BMC Genomics 7:32 [View Article][PubMed]
    [Google Scholar]
  2. Asadollahi M. A., Maury J., Patil K. R., Schalk M., Clark A., Nielsen J. ( 2009). Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11:328–334 [View Article][PubMed]
    [Google Scholar]
  3. Bailey M. J., Tähtiharju J. ( 2003). Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol 62:156–162 [View Article][PubMed]
    [Google Scholar]
  4. Bergquist P., Te’o V., Gibbs M., Cziferszky A., de Faria F. P., Azevedo M., Nevalainen H. ( 2002). Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. Extremophiles 6:177–184 [View Article][PubMed]
    [Google Scholar]
  5. Bisaria V. S., Ghose T. K. ( 1981). Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microb Technol 3:90–104 [View Article]
    [Google Scholar]
  6. Boghigian B. A., Seth G., Kiss R., Pfeifer B. A. ( 2010). Metabolic flux analysis and pharmaceutical production. Metab Eng 12:81–95 [View Article][PubMed]
    [Google Scholar]
  7. Brody H., Maiyuran S. ( 2009). RNAi-mediated gene silencing of highly expressed genes in the industrial fungi Trichoderma reesei and Aspergillus niger . Ind Biotechnol 5:53–60 [CrossRef]
    [Google Scholar]
  8. Carberry S., Doyle S. ( 2007). Proteomic studies in biomedically and industrially relevant fungi. Cytotechnology 53:95–100 [View Article][PubMed]
    [Google Scholar]
  9. Carter G. L., Allison D., Rey M. W., Dunn-Coleman N. S. ( 1992). Chromosomal and genetic analysis of the electrophoretic karyotype of Trichoderma reesei: mapping of the cellulase and xylanase genes. Mol Microbiol 6:2167–2174 [View Article][PubMed]
    [Google Scholar]
  10. Cherry J. R., Fidantsef A. L. ( 2003). Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443 [View Article][PubMed]
    [Google Scholar]
  11. Choy V., Patel N., Thibault J. ( 2011). Application of image analysis in the fungal fermentation of Trichoderma reesei RUT-C30. Biotechnol Prog [View Article][PubMed]
    [Google Scholar]
  12. Collén A., Saloheimo M., Bailey M., Penttilä M., Pakula T. M. ( 2005). Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng 89:335–344 [View Article][PubMed]
    [Google Scholar]
  13. Datema R., Schwarz R. T. ( 1978). Formation of 2-deoxyglucose-containing lipid-linked oligosaccharides. Interference with glycosylation of glycoproteins. Eur J Biochem 90:505–516 [View Article][PubMed]
    [Google Scholar]
  14. De Bruyn A., Maras M., Schraml J., Herdewijn P., Contreras R. ( 1997). NMR evidence for a novel asparagine-linked oligosaccharide on cellobiohydrolase I from Trichoderma reesei RUTC 30. FEBS Lett 405:111–113 [View Article][PubMed]
    [Google Scholar]
  15. de Faria F. P., Te’O V. S. J., Bergquist P. L., Azevedo M. O., Nevalainen K. M. H. ( 2002). Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei . Lett Appl Microbiol 34:119–123 [View Article][PubMed]
    [Google Scholar]
  16. Eveleigh D. E. ( 1982). Reducing the cost of cellulase production - selection of the hypercellulolytic Trichoderma reesei RUT-C30 mutant New Brunswick: Rutgers University;
    [Google Scholar]
  17. Fernandes L., Araújo M. A., Amaral A., Reis V. C. B., Martins N. F., Felipe M. S. ( 2005). Cell signaling pathways in Paracoccidioides brasiliensis – inferred from comparisons with other fungi. Genet Mol Res 4:216–231[PubMed]
    [Google Scholar]
  18. Gallo B. J., Andreotti R., Roche C., Ryu D., Mandels M. ( 1978). Cellulase production by a new mutant strain of Trichoderma reesei MCG 77. Biotechnol Bioeng Symp 8:89–101
    [Google Scholar]
  19. García R., Cremata J. A., Quintero O., Montesino R., Benkestock K., Ståhlberg J. ( 2001). Characterization of protein glycoforms with N-linked neutral and phosphorylated oligosaccharides: studies on the glycosylation of endoglucanase 1 (Cel7B) from Trichoderma reesei . Biotechnol Appl Biochem 33:141–152 [View Article][PubMed]
    [Google Scholar]
  20. Gerngross T. U. ( 2004). Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414 [View Article][PubMed]
    [Google Scholar]
  21. Geysens S., Pakula T., Uusitalo J., Dewerte I., Penttilä M., Contreras R. ( 2005). Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 71:2910–2924 [View Article][PubMed]
    [Google Scholar]
  22. Ghosh A., Al-Rabiai S., Ghosh B. K., Trimiño-Vazquez H., Eveleigh D. E., Montenecourt B. S. ( 1982). Increased endoplasmic reticulum content of a mutant of Trichoderma reesei (RUT-C30) in relation to cellulase synthesis. Enzyme Microb Technol 4:110–113 [View Article]
    [Google Scholar]
  23. Ghosh A., Ghosh B. K., Trimino-Vazquez H., Eveleigh D. E., Montenecourt B. S. ( 1984). Cellulase secretion from a hyper-cellulolytic mutant of Trichoderma reesei Rut-C30. Arch Microbiol 140:126–133 [View Article]
    [Google Scholar]
  24. Glenn M., Ghosh A., Ghosh B. K. ( 1985). Subcellular fractionation of a hypercellulolytic mutant, Trichoderma reesei Rut-C30: localization of endoglucanase in microsomal fraction. Appl Environ Microbiol 50:1137–1143[PubMed]
    [Google Scholar]
  25. González-Fernández R., Prats E., Jorrín-Novo J. V. ( 2010). Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:932527 [View Article][PubMed]
    [Google Scholar]
  26. Guangtao Z., Hartl L., Schuster A., Polak S., Schmoll M., Wang T., Seidl V., Seiboth B. ( 2009). Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina . J Biotechnol 139:146–151 [View Article][PubMed]
    [Google Scholar]
  27. Gyalai-Korpos M., Mangel R., Alvira P., Dienes D., Ballesteros M., Réczey K. ( 2011). Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes. J Ind Microbiol Biotechnol 38:791–802 [View Article][PubMed]
    [Google Scholar]
  28. Harkki A., Uusitalo J., Bailey M., Penttilä M., Knowles J. K. C. ( 1989). A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei . Nat Biotechnol 7:596–603 [View Article]
    [Google Scholar]
  29. Harrison M. J., Wathugala I. M., Tenkanen M., Packer N. H., Nevalainen K. M. H. ( 2002). Glycosylation of acetylxylan esterase from Trichoderma reesei . Glycobiology 12:291–298 [View Article][PubMed]
    [Google Scholar]
  30. Hartl L., Seiboth B. ( 2005). Sequential gene deletions in Hypocrea jecorina using a single blaster cassette. Curr Genet 48:204–211 [View Article][PubMed]
    [Google Scholar]
  31. Hazell B. W., Te’o V. S. J., Bradner J. R., Bergquist P. L., Nevalainen K. M. H. ( 2000). Rapid transformation of high cellulase-producing mutant strains of Trichoderma reesei by microprojectile bombardment. Lett Appl Microbiol 30:282–286 [View Article][PubMed]
    [Google Scholar]
  32. Herpoël-Gimbert I., Margeot A., Dolla A., Jan G., Mollé D., Lignon S., Mathis H., Sigoillot J.-C., Monot F., Asther M. ( 2008). Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18 [View Article][PubMed]
    [Google Scholar]
  33. Hubbard S. C., Ivatt R. J. ( 1981). Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50:555–583 [View Article][PubMed]
    [Google Scholar]
  34. Hui J. P. M., Lanthier P., White T. C., McHugh S. G., Yaguchi M., Roy R., Thibault P. ( 2001). Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 752:349–368 [View Article]
    [Google Scholar]
  35. Ilmén M., Onnela M. L., Klemsdal S., Keränen S., Penttilä M. ( 1996). Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei . Mol Gen Genet 253:303–314[PubMed]
    [Google Scholar]
  36. Jouhten P., Pitkänen E., Pakula T., Saloheimo M., Penttilä M., Maaheimo H. ( 2009). 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose. BMC Syst Biol 3:104 [View Article][PubMed]
    [Google Scholar]
  37. Joutsjoki V. V., Torkkeli T. K., Nevalainen K. M. H. ( 1993a). Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei . Curr Genet 24:223–228 [View Article][PubMed]
    [Google Scholar]
  38. Joutsjoki V. V., Kuittinen M., Torkkeli T. K., Suominen P. L. ( 1993b). Secretion of the Hormoconis resinae glucoamylase P enzyme from Trichoderma reesei directed by the natural and the cbh1 gene secretion signal. FEMS Microbiol Lett 112:281–286 [View Article][PubMed]
    [Google Scholar]
  39. Juhász T., Szengyel Z., Szijártó N., Réczey K. ( 2004). Effect of pH on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 113-116:201–211 [View Article][PubMed]
    [Google Scholar]
  40. Kautto L. K. ( 2009). Trichoderma reesei proteasome and genome-wide effects of the expression of mutant cellobiohydrolase I . http://minerva.mq.edu.au:8080/vital/access/manager/Repository/mq:9273
    [Google Scholar]
  41. Kiiskinen L.-L., Kruus K., Bailey M., Ylösmäki E., Siika-Aho M., Saloheimo M. ( 2004). Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074 [View Article][PubMed]
    [Google Scholar]
  42. Kim Y., Nandakumar M. P., Marten M. R. ( 2007). Proteomics of filamentous fungi. Trends Biotechnol 25:395–400 [View Article][PubMed]
    [Google Scholar]
  43. Kubicek C. P., Mikus M., Schuster A., Schmoll M., Seiboth B. ( 2009). Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina . Biotechnol Biofuels 2:19 [View Article][PubMed]
    [Google Scholar]
  44. Le Crom S., Schackwitz W., Pennacchio L., Magnuson J. K., Culley D. E., Collett J. R., Martin J., Druzhinina I. S., Mathis H. & other authors ( 2009). Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106:16151–16156 [View Article][PubMed]
    [Google Scholar]
  45. Li B., Warner J. R. ( 1996). Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis. J Biol Chem 271:16813–16819 [View Article][PubMed]
    [Google Scholar]
  46. Limón M. C., Pakula T., Saloheimo M., Penttilä M. ( 2011). The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Microb Cell Fact 10:40 [View Article][PubMed]
    [Google Scholar]
  47. Lubertozzi D., Keasling J. D. ( 2009). Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75 [View Article][PubMed]
    [Google Scholar]
  48. Manczinger L., Ferenczy L. ( 1985). Somatic cell fusion of Trichoderma reesei resulting in new genetic combinations. Appl Microbiol Biotechnol 22:72–76 [View Article]
    [Google Scholar]
  49. Mandels M., Reese E. T. ( 1957). Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269–278[PubMed]
    [Google Scholar]
  50. Mandels M., Weber J., Parizek R. ( 1971). Enhanced cellulase production by a mutant of Trichoderma viride . Appl Microbiol 21:152–154[PubMed]
    [Google Scholar]
  51. Mäntylä A. L., Rossi K. H., Vanhanen S. A., Penttilä M. E., Suominen P. L., Nevalainen K. M. H. ( 1992). Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Curr Genet 21:471–477 [View Article][PubMed]
    [Google Scholar]
  52. Maras M., De Bruyn A., Schraml J., Herdewijn P., Claeyssens M., Fiers W., Contreras R. ( 1997a). Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245:617–625 [View Article][PubMed]
    [Google Scholar]
  53. Maras M., Saelens X., Laroy W., Piens K., Claeyssens M., Fiers W., Contreras R. ( 1997b). In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammalian-type oligosaccharides – evidence for N-acetylglucosaminyltransferase-I-accepting glycans from Trichoderma reesei . Eur J Biochem 249:701–707 [View Article][PubMed]
    [Google Scholar]
  54. Maras M., De Bruyn A., Vervecken W., Uusitalo J., Penttilä M., Busson R., Herdewijn P., Contreras R. ( 1999). In vivo synthesis of complex N-glycans by expression of human N-acetylglucosaminyltransferase I in the filamentous fungus Trichoderma reesei . FEBS Lett 452:365–370 [View Article][PubMed]
    [Google Scholar]
  55. Margolles-Clark E., Hayes C. K., Harman G. E., Penttilä M. ( 1996). Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei . Appl Environ Microbiol 62:2145–2151[PubMed]
    [Google Scholar]
  56. Margolles-Clark E., Ihnen M., Penttilä M. ( 1997). Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57:167–179 [View Article]
    [Google Scholar]
  57. Martinez D., Berka R. M., Henrissat B., Saloheimo M., Arvas M., Baker S. E., Chapman J., Chertkov O., Coutinho P. M. & other authors ( 2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560 [View Article][PubMed]
    [Google Scholar]
  58. Matsuoka Y., Shimizu K. ( 2010). Current status of 13C-metabolic flux analysis and future perspectives. Process Biochem 45:1873–1881 [View Article]
    [Google Scholar]
  59. Melzer G., Esfandabadi M. E., Franco-Lara E., Wittmann C. ( 2009). Flux design: In silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3:120 [View Article][PubMed]
    [Google Scholar]
  60. Meyer V. ( 2008). Genetic engineering of filamentous fungi–progress, obstacles and future trends. Biotechnol Adv 26:177–185 [View Article][PubMed]
    [Google Scholar]
  61. Miettinen-Oinonen A., Torkkeli T., Paloheimo M., Nevalainen H. ( 1997). Overexpression of the Aspergillus niger pH 2.5 acid phosphatase gene in a heterologous host Trichoderma reesei . J Biotechnol 58:13–20 [View Article][PubMed]
    [Google Scholar]
  62. Montenecourt B. S. ( 1983). Trichoderma reesei cellulases. Trends Biotechnol 1:156–161 [View Article]
    [Google Scholar]
  63. Montenecourt B. S., Eveleigh D. E. ( 1977a). Semiquantitative plate assay for determination of cellulase production by Trichoderma viride . Appl Environ Microbiol 33:178–183[PubMed]
    [Google Scholar]
  64. Montenecourt B. S., Eveleigh D. E. ( 1977b). Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl Environ Microbiol 34:777–782[PubMed]
    [Google Scholar]
  65. Montenecourt B. S., Eveleigh D. E. ( 1979). Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei . Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Advances in Chemistry Series, 181289–301 Brown R., Jurasek L. Washington, DC: American Chemical Society; [View Article]
    [Google Scholar]
  66. Murray P., Aro N., Collins C., Grassick A., Penttilä M., Saloheimo M., Tuohy M. ( 2004). Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii . Protein Expr Purif 38:248–257 [View Article][PubMed]
    [Google Scholar]
  67. Nagendran S., Hallen-Adams H. E., Paper J. M., Aslam N., Walton J. D. ( 2009). Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei . Fungal Genet Biol 46:427–435 [View Article][PubMed]
    [Google Scholar]
  68. Nakari-Setälä T., Paloheimo M., Kallio J., Vehmaanperä J., Penttilä M., Saloheimo M. ( 2009). Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75:4853–4860 [View Article][PubMed]
    [Google Scholar]
  69. Nakayashiki H., Hanada S., Nguyen B. Q., Kadotani N., Tosa Y., Mayama S. ( 2005). RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283 [View Article][PubMed]
    [Google Scholar]
  70. Nevalainen H., Lavygina I., Neethling D., Packer N. ( 1995). The biochemical nature of the cell envelope of a high cellulase-secreting mutant differs from that of the Trichoderma reesei wild type. J Biotechnol 42:53–59 [View Article]
    [Google Scholar]
  71. Nykänen M., Saarelainen R., Raudaskoski M., Nevalainen K. M. H., Mikkonen A. ( 1997). Expression and secretion of barley cysteine endopeptidase B and cellobiohydrolase I in Trichoderma reesei . Appl Environ Microbiol 63:4929–4937[PubMed]
    [Google Scholar]
  72. Nyyssönen E., Penttilä M., Harkki A., Saloheimo A., Knowles J. K. C., Keränen S. ( 1993). Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei . Biotechnology (N Y) 11:591–595 [View Article][PubMed]
    [Google Scholar]
  73. Olsson L., Christensen T. M. I. E., Hansen K. P., Palmqvist E. A. ( 2003). Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme Microb Technol 33:612–619 [View Article]
    [Google Scholar]
  74. Pakula T. M., Salonen K., Uusitalo J., Penttilä M. ( 2005). The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei . Microbiology 151:135–143 [View Article][PubMed]
    [Google Scholar]
  75. Paloheimo M., Mäntylä A., Kallio J., Suominen P. ( 2003). High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure. Appl Environ Microbiol 69:7073–7082 [View Article][PubMed]
    [Google Scholar]
  76. Paloheimo M., Mäntylä A., Kallio J., Puranen T., Suominen P. ( 2007). Increased production of xylanase by expression of a truncated version of the xyn11A gene from Nonomuraea flexuosa in Trichoderma reesei . Appl Environ Microbiol 73:3215–3224 [View Article][PubMed]
    [Google Scholar]
  77. Penttilä M., Nevalainen H., Rättö M., Salminen E., Knowles J. ( 1987). A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei . Gene 61:155–164 [View Article][PubMed]
    [Google Scholar]
  78. Persson I., Tjerneld F., Hahn-Hägerdal B. ( 1991). Fungal cellulolytic enzyme production: A review. Process Biochem 26:65–74 [View Article]
    [Google Scholar]
  79. Peterson R., Grinyer J., Nevalainen H. ( 2011). Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest. Mycol Prog 10:207–218 [View Article]
    [Google Scholar]
  80. Poidevin L., Levasseur A., Paës G., Navarro D., Heiss-Blanquet S., Asther M., Record E. ( 2009). Heterologous production of the Piromyces equi cinnamoyl esterase in Trichoderma reesei for biotechnological applications. Lett Appl Microbiol 49:673–678 [View Article][PubMed]
    [Google Scholar]
  81. Ralser M., Wamelink M. M., Struys E. A., Joppich C., Krobitsch S., Jakobs C., Lehrach H. ( 2008). A catabolic block does not sufficiently explain how 2-deoxy-d-glucose inhibits cell growth. Proc Natl Acad Sci U S A 105:17807–17811 [View Article][PubMed]
    [Google Scholar]
  82. Ruiz-Díez B. ( 2002). Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195 [View Article][PubMed]
    [Google Scholar]
  83. Ryu D. D. Y., Mandels M. ( 1980). Cellulases: biosynthesis and applications. Enzyme Microb Technol 2:91–102 [View Article]
    [Google Scholar]
  84. Saarelainen R., Mäntylä A., Nevalainen H., Suominen P. ( 1997). Expression of barley endopeptidase B in Trichoderma reesei . Appl Environ Microbiol 63:4938–4940[PubMed]
    [Google Scholar]
  85. Salles B. C., Te’o V. S., Gibbs M. D., Bergquist P. L., Filho E. X., Ximenes E. A., Nevalainen K. M. H. ( 2007). Identification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei . Biotechnol Lett 29:1195–1201 [View Article][PubMed]
    [Google Scholar]
  86. Saloheimo M., Valkonen M., Penttilä M. ( 2003). Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47:1149–1161 [View Article][PubMed]
    [Google Scholar]
  87. Seidl V., Gamauf C., Druzhinina I. S., Seiboth B., Hartl L., Kubicek C. P. ( 2008). The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics 9:327 [View Article][PubMed]
    [Google Scholar]
  88. Seidl V., Seibel C., Kubicek C. P., Schmoll M. ( 2009). Sexual development in the industrial workhorse Trichoderma reesei . Proc Natl Acad Sci U S A 106:13909–13914 [View Article][PubMed]
    [Google Scholar]
  89. Sheir-Neiss G., Montenecourt B. S. ( 1984). Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations. Appl Microbiol Biotechnol 20:46–53 [View Article]
    [Google Scholar]
  90. Simmons E. G. ( 1977). Classification of some cellulase-producing Trichoderma species. Second International Mycological Congress, Abstracts618 Simmons E. G.
    [Google Scholar]
  91. Singh J., Tyers M. ( 2009). A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. Genes Dev 23:1944–1958 [View Article][PubMed]
    [Google Scholar]
  92. Singhania R. R., Sukumaran R. K., Pandey A. ( 2007). Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl Biochem Biotechnol 142:60–70 [View Article][PubMed]
    [Google Scholar]
  93. Stals I., Sandra K., Geysens S., Contreras R., Van Beeumen J., Claeyssens M. ( 2004). Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14:713–724 [View Article][PubMed]
    [Google Scholar]
  94. Steiger M. G., Vitikainen M., Uskonen P., Brunner K., Adam G., Pakula T., Penttilä M., Saloheimo M., Mach R. L., Mach-Aigner A. R. ( 2011). Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77:114–121 [View Article][PubMed]
    [Google Scholar]
  95. Te’o V. S. J., Cziferszky A. E., Bergquist P. L., Nevalainen K. M. H. ( 2000). Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei . FEMS Microbiol Lett 190:13–19 [View Article][PubMed]
    [Google Scholar]
  96. Te’o V. S. J., Bergquist P. L., Nevalainen K. M. H. ( 2002). Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system. J Microbiol Methods 51:393–399 [View Article][PubMed]
    [Google Scholar]
  97. Travers K. J., Patil C. K., Wodicka L., Lockhart D. J., Weissman J. S., Walter P. ( 2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258 [View Article][PubMed]
    [Google Scholar]
  98. Wang T. H., Zhong Y. H., Huang W., Liu T., You Y. W. ( 2005). Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei . Lett Appl Microbiol 40:424–429 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054031-0
Loading
/content/journal/micro/10.1099/mic.0.054031-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error