1887

Abstract

Most strains are resistant to n-hexane. OST4251 is a n-hexane-sensitive strain that was constructed by transferring the n-hexane-sensitive phenotype from a n-hexane-sensitive strain by P1 transduction. OST4251 is resistant to diphenyl ether, which is less harmful than n-hexane to micro-organisms. The genetic determinant responsible for this subtle difference in the solvent resistance is mapped at 1·2 min on the chromosome. Nucleotide sequence analysis showed that IS and IS had integrated upstream of the / structural gene in OST4251. The integration of IS decreased the activity of the / promoter. A product of the gene was identified immunologically as an 87 kDa minor protein associated with the outer membrane. Upon transformation with plasmids containing the / gene, OST4251 produced a high level of the gene product in the membrane and acquired n-hexane resistance. Thus, the low level of promoter activity resulted in low Imp production and the n-hexane-sensitivity phenotype. It is likely that the gene product contributes to n-hexane resistance by reducing the influx of n-hexane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.25927-0
2003-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491265.html?itemId=/content/journal/micro/10.1099/mic.0.25927-0&mimeType=html&fmt=ahah

References

  1. Aono R., Kobayashi H., Joblin K. N., Horikoshi K. 1994a; Effects of organic solvents on growth of Escherichia coli K-12. Biosci Biotechnol Biochem 58:2009–2014
    [Google Scholar]
  2. Aono R., Negishi T., Aibe K., Inoue A., Horikoshi K. 1994b; Mapping of organic solvent tolerance gene ostA in Escherichia coli K-12. Biosci Biotechnol Biochem 58:1231–1235
    [Google Scholar]
  3. Aono R., Negishi T., Nakajima H. 1994c; Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli . Appl Environ Microbiol 60:4624–4626
    [Google Scholar]
  4. Aono R., Kobayashi M., Nakajima H., Kobayashi H. 1995; A close correlation between improvement of organic solvent tolerance levels and alteration of resistance toward low levels of multiple antibiotics in Escherichia coli . Biosci Biotechnol Biochem 59:213–218
    [Google Scholar]
  5. Aono R., Tsukagoshi N., Yamamoto M. 1998; Involvement of outer membrane protein TolC, a possible member of the marsox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944
    [Google Scholar]
  6. Asako H., Nakajima H., Kobayashi K., Kobayashi M., Aono R. 1997; Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli . Appl Environ Microbiol 63:1428–1433
    [Google Scholar]
  7. Casadaban M. J., Chou J., Cohen S. N. 1980; In vitro gene fusions that join an enzymatically active β -galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143:971–980
    [Google Scholar]
  8. Clarke D. J., Jacq A., Holland B. 1996; A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology. Mol Microbiol 20:1273–1286
    [Google Scholar]
  9. Favre-Bulle O., Schouten T., Kingma J., Witholt B. 1991; Bioconversion of n-octane to octanoic acid by a recombinant Escherichia coli cultured in a two-liquid phase bioreactor. Biotechnology 9:367–371
    [Google Scholar]
  10. Filip C., Fletcher G., Wulff J. L., Earhart C. F. 1973; Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115:717–722
    [Google Scholar]
  11. Fralick J. A. 1996; Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli . J Bacteriol 178:5803–5805
    [Google Scholar]
  12. Isken S., de Bont J. A. M. 1996; Active efflux of toluene in a solvent-tolerant bacterium. J Bacteriol 178:6056–6058
    [Google Scholar]
  13. Inoue A., Horikoshi K. 1989; A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266
    [Google Scholar]
  14. Kelley W. L., Georgopoulos C. 1997; Positive control of the two-component RcsC/B signal transduction network by DjlA: a member of the DnaJ family of molecular chaperones in Escherichia coli . Mol Microbiol 25:913–931
    [Google Scholar]
  15. Kieboom J., Dennis J. J., de Bont J. A. M., Zylstra G. J. 1998; Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  17. Leo A. J. 1993; Calculating log P oct from structures. Chem Rev 93:1281–1306
    [Google Scholar]
  18. Li X. Z., Zhang L., Poole K. 1998; Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent resistance. J Bacteriol 180:2987–2991
    [Google Scholar]
  19. Ma D., Cook D. N., Alberti M., Pon N. G., Nikaido H., Hearst J. E. 1995; Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli . Mol Microbiol 16:45–55
    [Google Scholar]
  20. Miller J. H. 1972 Assay of β -galactosidase. Experiments in Molecular Genetics pp  352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Missiakas D., Betton J. M., Raina S. 1996; New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21:871–884
    [Google Scholar]
  22. Mosqueda G., Ramos J. L. 2000; A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol 182:937–943
    [Google Scholar]
  23. Nakajima H., Kobayashi K., Kobayashi M., Asako H., Aono R. 1995a; Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli . Appl Environ Microbiol 61:2302–2307
    [Google Scholar]
  24. Nakajima H., Kobayashi M., Negishi T., Aono R. 1995b; soxRS gene increased the level of organic solvent tolerance in Escherichia coli . Biosci Biotechnol Biochem 59:1323–1325
    [Google Scholar]
  25. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  26. Okusu H., Ma D., Nikaido H. 1996; AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308
    [Google Scholar]
  27. Paulsen I. T., Brown M. H., Skurray R. A. 1996; Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608
    [Google Scholar]
  28. Ramos J. L., Douqe E., Godoy P., Segura A. 1998; Efflux pump involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329
    [Google Scholar]
  29. Sampson B. A., Misra R., Benson S. A. 1989; Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122:491–501
    [Google Scholar]
  30. Sikkema J., de Bont J. A. M., Poolman B. 1994; Intercalations of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028
    [Google Scholar]
  31. Sikkema J., de Bont J. A. M., Poolman B. 1995; Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222
    [Google Scholar]
  32. Tormo A., Almiron M., Kolter R. 1990; surA , an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172:4339–4347
    [Google Scholar]
  33. Tsukagoshi N., Aono R. 2000; Entry into and release of solvents by Escherichia coli in an organic–aqueous two-liquid phase system and substrate specificity of the AcrAB–TolC solvent-extruding pump. J Bacteriol 182:4803–4810
    [Google Scholar]
  34. White D. G., Goldman J. D., Demple B., Levy S. B. 1997; Role of the acrAB locus in organic solvent tolerance mediated by expression of marA , soxS , or robA in Escherichia coli . J Bacteriol 179:6122–6126
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.25927-0
Loading
/content/journal/micro/10.1099/mic.0.25927-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error