1887

Abstract

produces at least one extracellular zinc metalloprotease that may be involved in virulence. A zinc metalloprotease gene was cloned using a zinc metalloprotease gene as a probe. The predicted amino acid sequences of these and a extracellular zinc metalloproteases indicate that they are similar to the thermolysin-like family of metalloproteases (M4 family of metalloendopeptidases) and they are likely to be secreted via the general secretory pathway. isogenic mutants were constructed in genomovar III strains Pc715j and K56-2 by insertional inactivation of the genes. The mutants produced less protease than the parent strains. The strain K56-2 mutant was significantly less virulent than its parent strain in a chronic respiratory infection model; however, there was no difference between the virulence of strain Pc715j and a Pc715j mutant. The results indicate that this extracellular zinc metalloprotease may play a greater role in virulence in some strains of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26243-0
2003-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492263.html?itemId=/content/journal/micro/10.1099/mic.0.26243-0&mimeType=html&fmt=ahah

References

  1. Abe M., Nakazawa T. 1996; The dsbB gene product is required for protease production by Burkholderia cepacia . Infect Immun 64:4378–4380
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A. Struhl K. (editors) 1989 Current Protocols in Molecular Biology New York: Wiley;
  4. Banbula A., Potempa J., Travis J., Fernandez-Catalan C., Mann K., Huber R., Bode W., Medrano F. 1998; Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1·72 Å resolution. Structure 6:1185–1193
    [Google Scholar]
  5. Bever R. A., Iglewski B. H. 1988; Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol 170:4309–4314
    [Google Scholar]
  6. Braun P., Tommassen J., Filloux A. 1996; Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa . Mol Microbiol 19:297–306
    [Google Scholar]
  7. Braun P., de Groot A., Bitter W., Tommassen J. 1998; Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa . J Bacteriol 180:3467–3469
    [Google Scholar]
  8. Cash H. A., Woods D. E., McCullough B., Johanson W. G. Jr, Bass J. A. 1979; A rat model of chronic respiratory infection with Pseudomonas aeruginosa . Am Rev Respir Dis 119:453–459
    [Google Scholar]
  9. Chaowagul W., White N. J., Dance D. A., Wattanagoon Y., Naigowit P., Davis T. M., Looareesuwan S., Pitakwatchara N. 1989; Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis 159:890–899
    [Google Scholar]
  10. Colman P. M., Jansonius J. N., Matthews B. W. 1972; The structure of thermolysin: an electron density map at 2–3 Å resolution. J Mol Biol 70:701–724
    [Google Scholar]
  11. Dance D. A. 1991; Melioidosis: the tip of the iceberg?. Clin Microbiol Rev 4:52–60
    [Google Scholar]
  12. Darling P., Chan M., Cox A. D., Sokol P. A. 1998; Siderophore production by cystic fibrosis isolates of Burkholderia cepacia . Infect Immun 66:874–877
    [Google Scholar]
  13. Dennis J. J., Sokol P. A. 1995; Electrotransformation of Pseudomonas . Methods Mol Biol 47:125–133
    [Google Scholar]
  14. Dennis J. J., Zylstra G. J. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715
    [Google Scholar]
  15. DeShazer D., Woods D. E. 1996; Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. Biotechniques 20:762–764
    [Google Scholar]
  16. Dunnil M. S. 1962; Quantitative methods in the study of pulmonary pathology. Thorax 17:320–328
    [Google Scholar]
  17. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  18. Gessner A. R., Mortensen J. E. 1990; Pathogenic factors of Pseudomonas cepacia isolates from patients with cystic fibrosis. J Med Microbiol 33:115–120
    [Google Scholar]
  19. Gilligan P. H. 1991; Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4:35–51
    [Google Scholar]
  20. Gotschlich A., Huber B., Geisenberger O. 11 other authors 2001; Synthesis of multiple N -acylhomoserine lactones is widespread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24:1–14
    [Google Scholar]
  21. Hase C. C., Finkelstein R. A. 1991; Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol 173:3311–3317
    [Google Scholar]
  22. Henry D. A., Campbell M. E., LiPuma J. J., Speert D. P. 1997; Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 35:614–619
    [Google Scholar]
  23. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  24. Kessler E., Safrin M. 1988; Synthesis, processing, and transport of Pseudomonas aeruginosa elastase. J Bacteriol 170:5241–5247
    [Google Scholar]
  25. Kessler E., Safrin M. 1994; The propeptide of Pseudomonas aeruginosa elastase acts an elastase inhibitor. J Biol Chem 269:22726–22731
    [Google Scholar]
  26. Kessler E., Safrin M., Gustin J. K., Ohman D. E. 1998; Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J Biol Chem 273:30225–30231
    [Google Scholar]
  27. Kooi C., Cox A., Darling P., Sokol P. A. 1994; Neutralizing monoclonal antibodies to an extracellular Pseudomonas cepacia protease. Infect Immun 62:2811–2817
    [Google Scholar]
  28. Kooi C., Hodges R. S., Sokol P. A. 1997; Identification of neutralizing epitopes on Pseudomonas aeruginosa elastase and effects of cross-reactions on other thermolysin-like proteases. Infect Immun 65:472–477
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  30. Lewenza S., Conway B., Greenberg E. P., Sokol P. A. 1999; Quorum sensing in Burkholderia cepacia : identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756
    [Google Scholar]
  31. LiPuma J. J., Spilker T., Gill L. H., Campbell P. W. 3rd, Liu L., Mahenthiralingam E. 2001; Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164:92–96
    [Google Scholar]
  32. Madden T. L., Tatusov R. L., Zhang J. 1996; Applications of network blast server. Methods Enzymol 266:131–141
    [Google Scholar]
  33. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913
    [Google Scholar]
  34. Marie-Claire C., Ruffet E., Beaumont A., Roques B. P. 1999; The prosequence of thermolysin acts as an intramolecular chaperone when expressed in trans with the mature sequence in Escherichia coli . J Mol Biol 285:1911–1915
    [Google Scholar]
  35. McIver K., Kessler E., Ohman D. E. 1991; Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J Bacteriol 173:7781–7789
    [Google Scholar]
  36. McIver K. S., Kessler E., Olson J. C., Ohman D. E. 1995; The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa . Mol Microbiol 18:877–889
    [Google Scholar]
  37. McKevitt A. I., Woods D. E. 1984; Characterization of Pseudomonas cepacia isolates from patients with cystic fibrosis. J Clin Microbiol 19:291–293
    [Google Scholar]
  38. McKevitt A. I., Bajaksouzian S., Klinger J. D., Woods D. E. 1989; Purification and characterization of an extracellular protease from Pseudomonas cepacia . Infect Immun 57:771–778
    [Google Scholar]
  39. Mohr C. D., Tomich M., Herfst C. A. 2001; Cellular aspects of Burkholderia cepacia infection. Microbes Infect 3:425–435
    [Google Scholar]
  40. Morihara K. 1995; Pseudolysin and other pathogen endopeptidases of thermolysin family. Methods Enzymol 248:242–253
    [Google Scholar]
  41. Nakazawa T., Abe M. 1996; Pathogenesis of Burkholderia cepacia and export of protease by the general secretory pathway involving disulfide bond formation in the periplasm. In Molecular Biology of Pseudomonads Edited by Nakazawa T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Nakazawa T., Yamada Y., Ishibashi M. 1987; Characterization of hemolysin in extracellular products of Pseudomonas cepacia . J Clin Microbiol 25:195–198
    [Google Scholar]
  43. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  44. O'Donohue M. J., Beaumont A. 1996; The roles of the prosequence of thermolysin in enzyme inhibition and folding in vitro. J Biol Chem 271:26477–26481
    [Google Scholar]
  45. O'Donohue M. J., Roques B. P., Beaumont A. 1994; Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin. Biochem J 300:599–603
    [Google Scholar]
  46. Ohman D. E., Sadoff J. C., Iglewski B. H. 1980; Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization. Infect Immun 28:899–908
    [Google Scholar]
  47. Pugsley A. P. 1993; The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  48. Rawlings N. D., Barrett A. J. 1995; Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228
    [Google Scholar]
  49. Rinderknecht H., Geokas M. C., Silverman P., Haverback B. J. 1968; A new ultrasensitive method for the determination of proteolytic activity. Clin Chim Acta 21:197–203
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  51. Schweizer H. P., Klassen T., Hoang T. 1996; Improved methods for gene analysis and expression in Pseudomonas spp. In Molecular Biology of Pseudomonads pp 229–237 Edited by Nakazawa K. F. T., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  52. Sokol P. A., Ohman D. E., Iglewski B. H. 1979; A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa . J Clin Microbiol 9:538–540
    [Google Scholar]
  53. Sokol P. A., Kooi C., Hodges R. S., Cachia P., Woods D. E. 2000; Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa or Burkholderia cepacia . J Infect Dis 181:1682–1692
    [Google Scholar]
  54. Speert D. P., Henry D., Vandamme P., Corey M., Mahenthiralingam E. 2002; Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8:181–187
    [Google Scholar]
  55. Teufel P., Gotz F. 1993; Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis . J Bacteriol 175:4218–4224
    [Google Scholar]
  56. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  57. Vandamme P., Holmes B., Vancanneyt M. 8 other authors 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200
    [Google Scholar]
  58. Vermis K., Coenye T., Mahenthiralingam E., Nelis H. J., Vandamme P. 2002; Evaluation of species-specific recA -based PCR tests for genomovar level identification within the Burkholderia cepacia complex. J Med Microbiol 51:937–940
    [Google Scholar]
  59. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa . Gene 148:81–86
    [Google Scholar]
  60. Woods D. 1984; Oligonucleotide screening of cDNA libraries. Focus 6:1–2
    [Google Scholar]
  61. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26243-0
Loading
/content/journal/micro/10.1099/mic.0.26243-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error