1887

Abstract

The DNA region of the chromosome containing the heat-shock genes and was cloned, and the genes were sequenced. These genes are arranged in the chromosome in the order . Northern hybridization experiments with RNA from and a DNA probe carrying both and genes showed a single, heat-inducible transcript of approximately 2200 nt, indicating that these genes form an operon. Primer extension analysis revealed a strong, heat-inducible transcription start site 59 nt upstream of , preceded by a sequence typical for the heat-shock promoters recognized by the factor, and a weak transcription start site 25 nt upstream the gene, preceded by a sequence typical for promoters. Transcription from the latter promoter occurred only at low temperatures. The operon cloned in a plasmid in cells was transcribed in a -dependent manner; the transcript size and the -dependent transcription start site were as in cells. Comparison of transcription regulation with the other well-characterized operons of the subdivision of proteobacteria (those of and ) indicates a high conservation of the transcriptional regulatory elements among these bacteria, with two promoters, and , involved in the regulation. The ability of the cloned genes to complement mutants was tested: restored a thermoresistant phenotype to bacteria and enabled phage to grow in the mutant cells. did not abolish thermosensitivity of bacteria but it complemented the mutant with respect to growth of phage. The results suggest that the GroEL chaperone may be more species-specific than the GroES co-chaperone.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26273-0
2003-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491483.html?itemId=/content/journal/micro/10.1099/mic.0.26273-0&mimeType=html&fmt=ahah

References

  1. Ait-Aissa S., Porche J., Arrigo A., Lambre C. 2000; Activation of the hsp70 promoter by envinromental inorganic and organic chemicals; relationships with cytotoxicity and lipophilicity. Toxicology 145:147–157
    [Google Scholar]
  2. Babst M., Hennecke H., Fischer H.-M. 1996; Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum . Mol Microbiol 19:827–839
    [Google Scholar]
  3. Baumann P., Schubert R. M. W. 1984; Vibrionaceae . In Bergey's Manual of Systematic Bacteriology , vol. 1 pp  516–517 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Bukau B., Horwich A. L. 1998; The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366
    [Google Scholar]
  5. Churchward G., Belin D., Nagamine Y. 1984; A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31:165–171
    [Google Scholar]
  6. Cowing D. W., Bardwell J. C. A., Craig E. A., Woolford C., Hendrix W., Gross C. A. 1985; Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A 82:2679–2683
    [Google Scholar]
  7. Czyż A., Jasiecki J., Bogdan A., Szpilewska H., Węgrzyn G. 2000; Genetically modified Vibrio harveyi strains as potential bioindicators of mutagenic pollution of marine environments. Appl Environ Microbiol 66:599–605
    [Google Scholar]
  8. Ellis R. J., van der Vies S. M. 1991; Molecular chaperones. Annu Rev Biochem 60:321–347
    [Google Scholar]
  9. Fayet O., Louarn J.-M., Georgopoulos C. 1986; Suppression of Escherichia coli . dnaA46 mutation by amplification of groES and groEL genes. Mol Gen Genet 202:435–445
    [Google Scholar]
  10. Fayet O., Ziegelhoffer T., Georgopoulos C. 1989; The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385
    [Google Scholar]
  11. Ferreyra R. G., Fernando C. S., Viale A. M. 1993; Cloning, characterization, and functional expression in Escherichia coli of chaperonin ( groESL ) genes from the phototrophic sulfur bacterium Chromatium vinosum . J Bacteriol 175:1514–1523
    [Google Scholar]
  12. Freeman J. A., Bassler B. L. 1999; A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi . Mol Microbiol 31:665–677
    [Google Scholar]
  13. Fujita M., Amemura A., Aramaki H. 1998; Transcription of the groESL operon in Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 163:237–242
    [Google Scholar]
  14. Furuki M., Tanaka N., Hiyama T., Nakamoto H. 1996; Cloning, characterization and functional analysis of groEL -like gene from thermophilic cyanobacterium Synechococcus vulanus , which does not form an operon with groES . Biochim Biophys Acta 1294:106–110
    [Google Scholar]
  15. Georgopoulos C. 1971; Bacterial mutants in which the gene N of bacteriophage lambda is blocked have an altered RNA polymerase. Proc Natl Acad Sci U S A 68:2977–2981
    [Google Scholar]
  16. Georgopoulos C., Herskovitz I. 1971; Escherichia coli mutants blocked in lambda DNA sythesis. In The Bacteriophage Lambda pp  553–564 Edited by Hershey A. D. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Georgopoulos C., Liberek K., Żylicz M., Ang D. 1990; Properties of the Escherichia coli heat shock proteins and their role in bacteriophage λ growth. In The Biology of the Heat Shock Proteins and Molecular Chaperones pp  209–224 Edited by Morimoto R. I., Tissieres A., Georgeopoulos C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Hartl F. U., Hayer-Hartl M. 2002; Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858
    [Google Scholar]
  19. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequence. Nucleic Acids Res 11:2237–2255
    [Google Scholar]
  20. Heidelberg J. F., Eisen J. A., Nelson W. C. 29 other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–483
    [Google Scholar]
  21. Houry W. A. 2001; Chaperone-assisted protein folding in the cell cytoplasm . Curr. Prot Pept Sci 2:244–227
    [Google Scholar]
  22. Houry W. A., Frishman D., Eckerskorn C., Lottspeich F., Hartl F. U. 1999; Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154
    [Google Scholar]
  23. Klein G., Walczak R., Krasnowska E., Błaszczak A., Lipińska B. 1995; Characterization of heat-shock response of the marine bacterium Vibrio harveyi. . Mol Microbiol 16:801–811
    [Google Scholar]
  24. Klein G., Żmijewski M., Krzewska J., Czeczatka M., Lipińska B. 1998; Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi . Mol Gen Genet 259:179–189
    [Google Scholar]
  25. Klein G., Laskowska E., Taylor A., Lipińska B. 2001; IbpA/B small heat-shock protein of marine bacterium Vibrio harveyi binds to proteins aggregated in a cell during heat shock. Mar Biotechnol 3:346–354
    [Google Scholar]
  26. Kuchanny D., Klein G., Krzewska J., Czyż A., Lipińska B. 1998; Cloning of the groE operon of the marine bacterium Vibrio harveyi using a lambda vector. Acta Biochim Polon 45:261–270
    [Google Scholar]
  27. Lally N. C., Nicoll S., Paxton E. A., Cary C. M., Sumption K. J. 1995; The Cowdria ruminantium groE operon. Microbiology 141:2091–2100
    [Google Scholar]
  28. Landry S. J., Zilstra-Ryalls J., Fayet O., Georgopoulos C., Gierasch L. M. 1993; Characterization of a functionally important mobile domain of GroES. Nature 364:255–258
    [Google Scholar]
  29. Lee W. T., Terslesky K. C., Tabita F. R. 1997; Cloning and characterization of two groESL operons of Rhodobacter sphaeroides : transcriptional regulation of the heat-induced groESL operon. J Bacteriol 179:487–495
    [Google Scholar]
  30. Lehel C., Los D., Wada H., Gyoryei J., Horvath I., Kovacs E., Murata N., Vigh L. 1993; A second groEL -like gene, organized in a groESL operon, is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268:1799–1804
    [Google Scholar]
  31. Lindquist S., Craig E. A. 1988; The heat-shock proteins. Annu Rev Genet 22:631–677
    [Google Scholar]
  32. Lipińska B., Sharma S., Georgopoulos C. 1988; Sequence analysis and regulation of the htrA gene of Escherichia coli : a σ 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16:10053–10067
    [Google Scholar]
  33. Love B. C., Hansen L. M., Hirsh D. C. 1995; Cloning and sequence of the groESL heat-shock operon of Pasteurella multocida . Gene 166:179–180
    [Google Scholar]
  34. McLennan N. F., Girshovich A. S., Lissin N. M., Charters Y., Masters M. 1993; The strongly conserved carboxyl-terminus glycine-methionine motif of the Escherichia coli GroEL chaperonin is dispensable. Mol Microbiol 7:49–58
    [Google Scholar]
  35. Mogk A., Homuth G., Scholz C., Kim L., Schmid F. X., Schumann W. 1997; The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis . EMBO J 16:4579–4590
    [Google Scholar]
  36. Mizunoe Y., Wai S. N., Umene K., Kokubo T., Kawabata S., Yoshida S. 1999; Cloning, sequencing, and functional expression in Escherichia coli of chaperonin ( groESL ) genes from Vibrio cholerae . Microbiol Immunol 43:513–520
    [Google Scholar]
  37. Neidhardt F. C., VanBogelen R. A., Vaughn V. 1984; The genetics and regulation of heat-shock proteins. Annu Rev Genet 18:295–329
    [Google Scholar]
  38. Rajaram H., Ballal A. D., Apte S. K., Wiegert T., Schumann W. 2001; Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterial Anabaena sp. strain L-31. Biochim Biophys Acta 1519143–146
    [Google Scholar]
  39. Ruby G., Greenberg E. P., Hastings J. W. 1980; Planctonic marine luminous bacteria – species distribution in the water column. Appl Environ Microbiol 39:302–306
    [Google Scholar]
  40. Rusanganwa E., Gupta R. S. 1993; Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti . Gene 126:67–75
    [Google Scholar]
  41. Ryan J. A., Hightower L. E. 1996; Stress proteins as molecular biomarkers for environmental toxicology. EXS 77:411–424
    [Google Scholar]
  42. Sambrook J., Fritsch F., Maniatis T. E. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sanders B. M., Martin L. S. 1993; Stress proteins as biomarkers of contaminant exposure in archived environmental samples. Sci Total Environ 139: 140459–470
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  45. Schon U., Schumann W. 1993; Molecular cloning, sequencing and transcriptional analysis of the groESL operon from Bacillus stearothermophilus . J Bacteriol 175:2465–2469
    [Google Scholar]
  46. Schumann W. 1996; Regulation of the heat shock response in Escherichia coli and Bacillus subtilis . J Biosci 21:133–148
    [Google Scholar]
  47. Segal G., Ron E. Z. 1996a; Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat. J Bacteriol 178:3634–3640
    [Google Scholar]
  48. Segal G., Ron E. Z. 1996b; Regulation and organization of the groE and dnaK operons in Eubacteria . FEMS Microbiol Lett 138:1–10
    [Google Scholar]
  49. Solomon L. R., Massom L. R., Jarret H. W. 1992; Enzymatic syntheses of DNA-silicas using DNA polymerase. Anal Biochem 203:58–69
    [Google Scholar]
  50. Vezina G., Sirois M., Clairoux N., Boissinot M. 1997; Cloning and characterization of the groE locus from Actinobacillus pleuropneumoniae . FEMS Microbiol Lett 147:11–16
    [Google Scholar]
  51. Viitanen P. V., Gatenby A. A., Lorimer G. H. 1992; Purified chaperonin 60 ( groEL ) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci 1:363–369
    [Google Scholar]
  52. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  53. Yura T., Nagai H., Mori H. 1993; Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350
    [Google Scholar]
  54. Zeilstra-Ryalls J., Fayet O., Georgopoulos C. 1991; The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol 45:301–325
    [Google Scholar]
  55. Zeilstra-Ryalls J., Fayet O., Georgopoulos C. 1994; Two classes of extragenic suppressor mutations identify functionally distinct regions of the GroEL chaperone of Escherichia coli . J Bacteriol 176:6558–6565
    [Google Scholar]
  56. Zhou Y.-N., Kusukawa N., Ericson J. W., Gross C. A., Yura T. 1988; Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ 32 . J Bacteriol 170:3640–3636
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26273-0
Loading
/content/journal/micro/10.1099/mic.0.26273-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error