1887

Abstract

It has been postulated that phenotypic variation in the relative expression of two chemically distinct types of lipopolysaccharide (LPS), a serotype-specific LPS (B-band) and a common antigen LPS (A-band) in is an important mechanism enabling this opportunistic pathogen to alter its surface characteristics to mediate adhesion and to survive under extreme conditions. To further investigate this, the relative expression levels of the two distinct types of LPS in PAO1 were investigated with cells grown in a chemostat at different dissolved oxygen tensions (O). The A-band LPS was constitutively expressed as O was increased from nearly zero to 350 % of air saturation. In contrast, the B-band LPS showed a remarkable increase with increased O. Almost no B-band LPS was found in cells grown at a O of less than 3 % of air saturation. Electron microscopic examination of cells revealed increased formation of membrane vesicles (MVs) on the surface of PAO1 under oxygen stress conditions. The toxicity of the supernatant of cultures to the growth of a hybridoma cell line significantly increased in samples taken from oxygen-stressed steady-state cultures. Furthermore, studies of adhesion in a continuous-flow biofilm culture revealed an increased adhesiveness for hydrophilic surfaces in PAO1 grown at a higher O. The oxygen-dependent alterations of cell-surface components and properties observed in this work provide a possible explanation for the emergence of lacking the B-band LPS in chronically infected cystic fibrosis patients. The results are also useful for understanding the processes involved in the formation of MVs in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26443-0
2003-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492789.html?itemId=/content/journal/micro/10.1099/mic.0.26443-0&mimeType=html&fmt=ahah

References

  1. Al-Tahhan R. M., Sandrin R., Bodour T. R., Maier A. A. 2000; Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa : effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268
    [Google Scholar]
  2. Berger M. 2002; Inflammatory mediators in cystic fibrosis lung disease. Allerg Asthma Proc 23:19–25
    [Google Scholar]
  3. Beveridge T. J. 1999; Structure of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733
    [Google Scholar]
  4. Boyd A., Chakrabarty A. M. 1995; Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol 15:162–168
    [Google Scholar]
  5. Burrows L. L., Lam J. S. 1999; Effect of wzx ( rfbX ) mutations on A-band and B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa O5. J Bacteriol 181:973–980
    [Google Scholar]
  6. Chayabutra C., Wu J., Ju L. K. 2001; Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effect of limiting nutrients and carbon substrate. Biotechnol Bioeng 72:25–33
    [Google Scholar]
  7. Costerton J. W., Cheng K. J., Geesey G. G., Ladd P. I., Nickel J., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464
    [Google Scholar]
  8. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322
    [Google Scholar]
  9. Denizot F., Lang R. 1986; Rapid colorimetric assay for cell growth and survival: modification to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277
    [Google Scholar]
  10. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
    [Google Scholar]
  11. Fomsgaard A., Freudenberg M. A., Galanos C. 1990; Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol 28:2627–2631
    [Google Scholar]
  12. Guerra-Santos A., Kaeppeli L. H., Fiechter O. 1986; Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448
    [Google Scholar]
  13. Hancock R. E. W., Mutharia L. M., Chan L., Darveau R. P., Speert D. P., Pier G. B. 1983; Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum sensitive, nontypable strains deficient in lipopolysaccharide O side chain. Infect Immun 42:170–177
    [Google Scholar]
  14. Hassatt D. J., Ma J. F., Elkins J. G. 10 other authors 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093
    [Google Scholar]
  15. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver stained polyacrylamide gel. J Bacteriol 154:269–277
    [Google Scholar]
  16. Kadurugamuwa J., Beveridge T. J. 1995; Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamycin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008
    [Google Scholar]
  17. Knirel Y. A., Bystrova O. V., Shashkov A. S. 7 other authors 2001; Structural analysis of the lipopolysaccharide core of a rough, cystic fibrosis isolate of Pseudomonas aeruginosa . Eur J Biochem 268:4708–4719
    [Google Scholar]
  18. Kropinski A. M. B., Lewis V., Berry D. 1987; Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO1. J Bacteriol 169:1960–1966
    [Google Scholar]
  19. Makin S. A., Beveridge T. G. 1996; Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45 °C. J Bacteriol 178:3350–3352
    [Google Scholar]
  20. McGroarty E. J., Rivera M. 1990; Growth dependent alterations in production of serotype specific and common antigen lipopolysaccharides in Pseudomonas aeruginosa PAO1. Infect Immun 58:1030–1037
    [Google Scholar]
  21. Michel G., Ball G., Goldberg J. B., Lazdunski A. 2000; Alteration of the lipopolysaccharide structure affects the functioning of the Xcp secretory system in Pseudomonas aeruginosa . J Bacteriol 182:696–703
    [Google Scholar]
  22. Nathan C., Shiloh M. U. 2000; Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogen. Proc Natl Acad Sci U S A 97:8841–8848
    [Google Scholar]
  23. Pier G. B. 1998; Pseudomonas aeruginosa : a key problem in cystic fibrosis. Missing or defective CFTR receptors may allow this pathogen to evade specific host cell defence mechanisms. ASM News 64:339–347
    [Google Scholar]
  24. Sabra W., Zeng A.-P., Lünsdorf H., Deckwer W.-D. 2000; Effect of oxygen on the formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl Environ Microbiol 66:4037–4044
    [Google Scholar]
  25. Sabra W., Kim E. J., Zeng A.-P. 2002; Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202
    [Google Scholar]
  26. Smith A. R. W., Munro S. M., Wait R., Hignett R. C. 1994; Effect on lipopolysaccharide structure of aeration during growth of a plum isolate of Pseudomonas syringae pv. morsprunorum . Microbiology 140:1585–1593
    [Google Scholar]
  27. Tatterson L. E., Poschet J. F., Firoved A., Skidmore J., Deretic V. 2001; CFTR and Pseudomonas infections in cystic fibrosis. Front Biosci 6:890–897
    [Google Scholar]
  28. Winkler J., Lünsdorf H., Wirbelauer C., Reinhardt D. P., Laqua H. 2001; Immunohistochemical and charge-specific localization of anionic constituents in pseudoexfoliation deposits on the central anterior lens capsule from individuals with pseudoexfoliation syndrome. Graefe's Arch Clin Exp Ophthalmol 239:952–960
    [Google Scholar]
  29. Xu D., Stewart K. S., Xia P. F., Huang C. T., McFeters G. 1998; Spatial physiological heterogenicity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64:4035–4039
    [Google Scholar]
  30. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W. R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26443-0
Loading
/content/journal/micro/10.1099/mic.0.26443-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error