1887

Abstract

In recent years, the recognition sequence of the SOS repressor LexA protein has been identified for several bacterial clades, such as the Gram-positive, green non-sulfur bacteria and Cyanobacteria phyla, or the ‘’, ‘’ and ‘’ classes. Nevertheless, the evolutionary relationship among these sequences and the proteins that recognize them has not been analysed. is an anaerobic Gram-negative bacterium that branched from a common bacterial ancestor immediately before the Proteobacteria phylum. Taking advantage of its intermediate position in the phylogenetic tree, and in an effort to reconstruct the evolutionary history of LexA-binding sequences, the gene has been isolated and its product purified to identify its DNA recognition motif through electrophoretic mobility assays and footprinting experiments. After comparing the available LexA DNA-binding sequences with the one, reported here, directed mutagenesis of the LexA-binding sequence and phylogenetic analyses of LexA proteins have revealed the existence of two independent evolutionary lanes for the LexA recognition motif that emerged from the Gram-positive box: one generating the Cyanobacteria and ‘’ LexA-binding sequences, and the other giving rise to the and ones, in a transitional step towards the current ‘’ LexA box. The contrast between the results reported here and the phylogenetic data available in the literature suggests that, some time after its emergence as a distinct bacterial class, the ‘’ lost its vertically received gene, but received later through lateral gene transfer a new gene belonging to either a cyanobacterium or a bacterial species closely related to this phylum. This constitutes the first report based on experimental evidence of lateral gene transfer in the evolution of a gene governing such a complex regulatory network as the bacterial SOS system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27315-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503783.html?itemId=/content/journal/micro/10.1099/mic.0.27315-0&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  2. Burckhardt S. E., Woodgate R., Scheuermann H. R., Echols H. 1988; UmuD mutagenesis protein of Escherichia coli: overproduction, purification and cleavage by RecA. Proc Natl Acad Sci U S A 85:1811–1815 [CrossRef]
    [Google Scholar]
  3. Campoy S., Fontes M., Padmanabhan S., Cortes P., Llagostera M., Barbe J. 2003; LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus. Mol Microbiol 49:769–781
    [Google Scholar]
  4. Combet C., Blanchet C., Geourjon C., Deléage G. 2000; NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150 [CrossRef]
    [Google Scholar]
  5. Courcelle J., Khodursky A., Peter B., Brown P. O., Hanawalt P. C. 2001; Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli . Genetics 158:41–64
    [Google Scholar]
  6. Davis E. O., Dullaghan E. M., Rand L. 2002; Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis . J Bacteriol 184:3287–3295 [CrossRef]
    [Google Scholar]
  7. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123
    [Google Scholar]
  8. Erill I., Escribano M., Campoy S., Barbé J. 2003; In silico analysis reveals substantial variability in the gene contents of the Gamma Proteobacteria LexA-regulon. Bioinformatics 19:2225–2236 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1989; phylip: phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  10. Fernández de Henestrosa A. R., Rivera E., Tapias A., Barbé J. 1998; Identification of the Rhodobacter sphaeroides SOS box. Mol Microbiol 28:991–1003 [CrossRef]
    [Google Scholar]
  11. Fernández de Henestrosa A. R., Ogi T., Aoyagi S., Chafin D., Hayes J. J., Ohmori H., Woodgate R. 2000; Identification of additional genes belonging to the LexA regulon in Escherichia coli . Mol Microbiol 35:1560–1572
    [Google Scholar]
  12. Fernández de Henestrosa A. R., Erill I., Magnuson J. K, Cuñé J., Barbé J. 2002; A green nonsulfur bacterium, Dehalococcoides ethenogenes, with the LexA binding sequence found in gram-positive organisms. J Bacteriol 184:6073–6080 [CrossRef]
    [Google Scholar]
  13. Fogh R. H., Ottleben G., Schnarr M., Boelens R., Kaptein R, Rüterjans H. 1994; Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy. EMBO J 13:3936–3944
    [Google Scholar]
  14. Forano E., Broussolle V., Gaudet G., Bryant J. A. 1994; Molecular cloning, expression and characterization of a new endoglucanase gene from Fibrobacter succinogenes S85. Current Microbiol 28:7–14 [CrossRef]
    [Google Scholar]
  15. Gaudet G., Forano E., Dauphin G., Delort A. M. 1992; Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ 1H-NMR and 13C-NMR investigation. Eur J Biochem 207:155–162 [CrossRef]
    [Google Scholar]
  16. Griffiths E., Gupta R. S. 2001; The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. . Microbiology 147:2611–2622
    [Google Scholar]
  17. Gupta R. S., Griffiths E. 2002; Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434 [CrossRef]
    [Google Scholar]
  18. Higgins D., Thompson J., Gibson T., Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  19. Knegtel R. M. A., Fogh R. H., Ottleben G., Dumoulin P., Schnarr M., Boelens R., Kaptein R, Rüterjans H. 1995; A model for the LexA repressor DNA complex. Proteins 21:226–236 [CrossRef]
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  21. Little J. W. 1984; Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci U S A 81:1375–1379 [CrossRef]
    [Google Scholar]
  22. Little J. W. 1991; Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411–422 [CrossRef]
    [Google Scholar]
  23. Ludwig W., Schleifer K. H. 1999; Phylogeny of Bacteria beyond the 16S rRNA standard. ASM News 65:752–757
    [Google Scholar]
  24. Luo Y., Pfuetzner R. A., Mosimann S., Paetzel M., Frey E. A., Cherney M., Kim B., Little J. W., Strynadka C. J. 2001; Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106:585–594 [CrossRef]
    [Google Scholar]
  25. Maidak B. L., Cole J. R. 11 other authors Parker C. T. Jr 1999; A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  26. Mazón G., Lucena J. M., Campoy S., Fernández de Henestrosa A. R., Candau P., Barbé J. 2004; LexA-binding sequences in Gram-positive and cyanobacteria are closely related. Mol Genet Genomics 271:40–49 [CrossRef]
    [Google Scholar]
  27. Nohmi T., Battista J. R., Dodson L. A., Walker G. C. 1988; RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci U S A 85:1816–1820 [CrossRef]
    [Google Scholar]
  28. Norioka N., Hsu M. Y., Inouye S., Inouye M. 1995; Two recA genes in Myxococcus xanthus . J Bacteriol 177:4179–4182
    [Google Scholar]
  29. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. CABIOS 12:357–358
    [Google Scholar]
  30. Patzer S. I., Hantke K. 2001; Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter inEscherichia coli . J Bacteriol 183:4806–4813 [CrossRef]
    [Google Scholar]
  31. Rajewsky N., Socci N., Zapotocky M., Siggia E. D. 2002; The evolution of DNA regulatory regions for proteo-gamma bacteria by interspecies comparisons. Genome Res 12:298–308 [CrossRef]
    [Google Scholar]
  32. Rodionov D. A., Mironov A. A., Gelfand M. S. 2001; Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol Lett 205:305–314 [CrossRef]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1992 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Sanger F., Nicklen S., Coulson S. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  35. Sassanfar M., Roberts J. W. 1990; Nature of SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96 [CrossRef]
    [Google Scholar]
  36. Tapias A., Barbé J. 1999; Regulation of divergent transcription from the uvrA-ssb promoters in Sinorhizobium meliloti. Mol Gen Genet 262:121–130 [CrossRef]
    [Google Scholar]
  37. Tapias A., Alonso J. C, Fernández S.., Barbé J. 2002; Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 30:1539–1546 [CrossRef]
    [Google Scholar]
  38. Walker G. C. 1984; Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93
    [Google Scholar]
  39. Winterling K. W., Chafin D., Hayes J. J., Sun J., Levine A. S., Yasbin R. E., Woodgate R. 1998; The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180:2201–2211
    [Google Scholar]
  40. Woese C. R., Stackebrandt E., Weisburg W. C. & 8 other authors; 1984; The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27315-0
Loading
/content/journal/micro/10.1099/mic.0.27315-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error