1887

Abstract

The ability of plant-associated micro-organisms to colonize and compete in the rhizosphere is specially relevant for the biotechnological application of micro-organisms as inoculants. Pseudomonads are one of the best root colonizers and they are widely used in plant-pathogen biocontrol and in soil bioremediation. This study analyses the motility mechanism of the well-known biocontrol strain F113. A 6·5 kb region involved in the flagellar filament synthesis, containing the , , , , and genes and part of the gene, was sequenced and mutants in this region were made. Several non-motile mutants affected in the , and genes, and a mutant with reduced motility properties, were obtained. These mutants were completely displaced from the root tip when competing with the wild-type F113 strain, indicating that the wild-type motility properties are necessary for competitive root colonization. A mutant affected in the gene had longer flagella, but the same motility and colonization properties as the wild-type. However, in rich medium or in the absence of iron limitation, it showed a higher motility, suggesting the possibility of improving competitive root colonization by manipulating the motility processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27362-0
2004-11-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503889.html?itemId=/content/journal/micro/10.1099/mic.0.27362-0&mimeType=html&fmt=ahah

References

  1. Arora S. K., Ritchings B. W., Almira E. C., Lory S., Ramphal R. 1998; The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66:1000–1007
    [Google Scholar]
  2. Arora S. K., Dasgupta N., Lory S., Ramphal R. 2000; Identification of two distinct types of flagellar cap proteins. FliD, in Pseudomonas aeruginosa. Infect Immun 681474–1479 [CrossRef]
    [Google Scholar]
  3. Auvray F., Thomas J., Fraser G. M., Hughes C. 2001; Flagellin polymerization control by a cytosolic export chaperone. J Mol Biol 308:221–229 [CrossRef]
    [Google Scholar]
  4. Bennett J. C. Q., Thomas J., Fraser G. M., Hughes C. 2001; Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol Microbiol 39:781–791 [CrossRef]
    [Google Scholar]
  5. Bertani G. 1951; Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . J Bacteriol 62:293–300
    [Google Scholar]
  6. Bloemberg G. V., Wijfjes A. H. M., Lamers G. E. M., Stuurman N., Lugtenberg B. J. J. 2000; Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant–Microbe Interact 13:1170–1176 [CrossRef]
    [Google Scholar]
  7. Brazil G. M., Kenefick L., Callanan M., Haro A., de Lorenzo V., Dowling D. N., O'Gara F. 1995; Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated-biphenyls and detection of bph gene-expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952
    [Google Scholar]
  8. Casaz P., Happel A., Keithan J., Read D. L., Strain S. R., Levy S. B. 2001; The Pseudomonas fluorescens transcription activator AdnA is required for adhesion and motility. Microbiology 147:355–361
    [Google Scholar]
  9. Chin-a-Woeng T. F. C., Bloemberg G. V., Mulders I. H. M., Dekkers L. C., Lugtenberg B. J. J. 2000; Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant–Microbe Interact 13:1340–1345 [CrossRef]
    [Google Scholar]
  10. Dasgupta N., Ferrell E. P., Kanack K. J., West S. E. H., Ramphal R. 2002; fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma(70) dependent and is downregulated by Vfr, a homolog ofEscherichia coli cyclic AMP receptor protein. J Bacteriol 184:5240–5250 [CrossRef]
    [Google Scholar]
  11. Dasgupta N., Wolfgang M. C., Goodman A. L., Arora S. K., Jyot J., Lory S., Ramphal R. 2003; A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa . Mol Microbiol 50:809–824 [CrossRef]
    [Google Scholar]
  12. Dekkers L. C., Phoelich C. C., Van der Fits L., Lugtenberg B. J. J. 1998a; A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95:7051–7056 [CrossRef]
    [Google Scholar]
  13. Dekkers L. C., van der Bij A. J., Mulders I. H. M., Phoelich C. C., Wentwoord R. A. R., Glandorf D. C. M., Wijffelman C. A., Lugtenberg B. J. J. 1998b; Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH : ubiquinone oxidoreductase (Nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant–Microbe Interact 11:763–771 [CrossRef]
    [Google Scholar]
  14. de Weert S., Vermeiren H., Mulders I. H. M., Kuiper I., Hendrickx N., Bloemberg G. V., Vanderleyden J., De Mot R., Lugtenberg B. J. J. 2002; Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens . Mol Plant–Microbe Interact 15:1173–1180 [CrossRef]
    [Google Scholar]
  15. De Weger L. A., Van der Vlugt C. I., Wijfjes A. H., Bakker P. A., Schippers B., Lugtenberg B. J. J. 1987; Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773
    [Google Scholar]
  16. Dowling D. N., O'Gara F. 1994; Metabolites of Pseudomonas involved in the biocontrol of plant-disease. Trends Biotechnol 12:133–141 [CrossRef]
    [Google Scholar]
  17. Fahraeus G. 1957; The infection of clover root hairs by nodule bacteria studied by simple glass technique. J Genet Microbiol 16:374–381 [CrossRef]
    [Google Scholar]
  18. Figurski D. H., Helinski D. R. 1979; Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  19. Fraser G. M., Bennett J. C. Q., Hughes C. 1999; Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32:569–580 [CrossRef]
    [Google Scholar]
  20. Höflich G., Wiehe W., Hecht-Buchholz C. 1995; Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150:139–147 [CrossRef]
    [Google Scholar]
  21. Jyot J., Dasgupta N., Ramphal R. 2002; fleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 184:5251–5260 [CrossRef]
    [Google Scholar]
  22. Kalogeraki V. S., Winans S. C. 1997; Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69–75 [CrossRef]
    [Google Scholar]
  23. Karlson U., Dowling D., O'Gara F., Rivilla R., Bittens M., Francesconi S., Pritchard H., Pedersen H. C. 1998; Development of self-contained plant/GMM systems for soil bioremediation. In Past, Present and Future Risk Assessment when using GMOs pp 23–31 Edited by de Vries G. E. Overschild, NL: ProBio Partners;
    [Google Scholar]
  24. Labes M., Simon R, Pühler A. 1990; A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene 89:37–46 [CrossRef]
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  26. Lugtenberg B. J. J., Dekkers L. C. 1999; What makes Pseudomonas bacteria rhizosphere competent?. Environ Microbiol 1:9–13 [CrossRef]
    [Google Scholar]
  27. Lugtenberg B. J. J., Dekkers L., Bloemberg G. V. 2001; Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490 [CrossRef]
    [Google Scholar]
  28. Marshall B., Robleto E. A., Wetzler R., Kulle P., Casaz P., Levy S. B. 2001; The adnA transcriptional factor affects persistence and spread of Pseudomonas fluorescens under natural field conditions. Appl Environ Microbiol 67:852–857 [CrossRef]
    [Google Scholar]
  29. McGee K., Milton D. L, Hörstedt P. 1996; Identification and characterization of additional flagellin genes from Vibrio anguillarum . J Bacteriol 178:5188–5198
    [Google Scholar]
  30. Naseby D. C., Lynch J. M. 1998; Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol Ecol 7:617–625 [CrossRef]
    [Google Scholar]
  31. Nelson K. E., Weinel C., Paulsen I. T. 40 other authors 2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808 [CrossRef]
    [Google Scholar]
  32. Ozin A. J., Claret L., Auvray F., Hughes C. 2003; The FliS chaperone selectively binds the disordered flagellin C-terminal domain central to polymerisation. FEMS Microbiol Lett 219:219–224 [CrossRef]
    [Google Scholar]
  33. Rainey P. B. 1999; Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257 [CrossRef]
    [Google Scholar]
  34. Ramos J. L., Duque E., Ramos-González M. I. 1991; Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant Tol plasmid. Appl Environ Microbiol 57:260–266
    [Google Scholar]
  35. Robleto E. A., Silby M. W., Levy S. B, López-Hernández I. 2003; Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: nonessential role of flagella in adhesion to sand and biofilm formation. J Bacteriol 185:453–460 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanchez-Contreras M., Martin M. Villacieros M., O'Gara F., Bonilla I., Rivilla R. 2002; Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184:1587–1596 [CrossRef]
    [Google Scholar]
  38. Scher F. M., Baker R. 1982; Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil supressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573 [CrossRef]
    [Google Scholar]
  39. Shanahan P., Borro A., O'Gara F., Glennon J. D. 1992; Isolation, trace enrichment and liquid-chromatographic analysis of diacetylphloroglucinol in culture and soil samples using UV and amperometric detection. J Chromatogr 606:171–177 [CrossRef]
    [Google Scholar]
  40. Simons M., Vanderbij A. J., Brand I., Deweger L. A., Wijffelman C. A., Lugtenberg B. J. J. 1996; Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant–Microbe Interact 9:600–607 [CrossRef]
    [Google Scholar]
  41. Stover K. C., Pham X. Q., Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1: an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  42. Villacieros M., Power B., Sanchez-Contreras M. 8 other authors 2003; Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54 [CrossRef]
    [Google Scholar]
  43. Walsh U. F. J. P., Morrissey J. P., O'Gara F. 2001; Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295 [CrossRef]
    [Google Scholar]
  44. Wattiau P., Woestyn S., Cornelis G. R. 1996; Customized secretion chaperones in pathogenic bacteria. Mol Microbiol 20:255–262 [CrossRef]
    [Google Scholar]
  45. Yee D. C., Maynard J. A., Wood T. K. 1998; Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27362-0
Loading
/content/journal/micro/10.1099/mic.0.27362-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error