1887

Abstract

The genes P1 (MPN141) and ORF6 (MPN142) are essential for the successful colonization of the human respiratory tract by . Both genes are located in the P1 operon, which consists of three genes. The P1 gene is the second gene in the operon, followed by the ORF6 gene. The P1 gene contains two (RepMP2/3, RepMP4) and the ORF6 gene one (RepMP5) specific repetitive DNA sequence, of which seven to nine similar but not identical copies are dispersed on the genome. Despite this large potential pool for genetic variation, isolates from patients contain only one of two distinct combinations of the genes P1 and ORF6. To analyse the functions of the repetitive DNA sequences, two ‘new’ combinations of the genes P1 and ORF6 were constructed, keeping the P1 gene constant but exchanging RepMP5 copies of the ORF6 gene. was transformed with these constructs and the transformants were tested for their ability to grow and survive under conditions and in guinea pigs. The two transformants colonized the respiratory tract of guinea pigs and showed no obvious differences in their growth behaviour compared to isolates from patients. The results indicate that the subtype-specific combinations of the repetitive elements in the P1 and ORF6 genes are not essential for the successful adherence of to host cells and the colonization of the respiratory tract of guinea pigs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27506-0
2004-12-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/12/mic1503989.html?itemId=/content/journal/micro/10.1099/mic.0.27506-0&mimeType=html&fmt=ahah

References

  1. Baseman, J. B., Cole, R. M., Krause, D. C. & Leith, D. K.(1982). Molecular basis for cytadsorption of Mycoplasma pneumoniae. J Bacteriol 151, 1514–1522. [Google Scholar]
  2. Cohan, F.(1994). Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol 9, 175–180.[CrossRef] [Google Scholar]
  3. Colman, S. D., Hu, P. C. & Bott, K. F.(1990). Prevalence of novel repeat sequences in and around the P1 operon in the genome of Mycoplasma pneumoniae. Gene 87, 91–96.[CrossRef] [Google Scholar]
  4. Dandekar, T., Huynen, M., Regula, J. T. & 10 other authors(2000). Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res 28, 3278–3288.[CrossRef] [Google Scholar]
  5. Dhandayuthapani, S., Rasmussen, W. G. & Baseman, J. B.(1999). Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc Natl Acad Sci U S A 96, 5227–5232.[CrossRef] [Google Scholar]
  6. Dorigo-Zetsma, J. W., Wilbrink, B., Dankert, J. & Zaat, S. A.(2001).Mycoplasma pneumoniae P1 type 1- and type 2-specific sequences within the P1 cytadhesin gene of individual strains. Infect Immun 69, 5612–5618.[CrossRef] [Google Scholar]
  7. Dumke, R., Catrein, I., Pirkl, E., Herrmann, R. & Jacobs, E.(2003). Subtyping of Mycoplasma pneumoniae isolates based on extended genome sequencing and on expression profiles. Int J Med Microbiol 292, 513–525.[CrossRef] [Google Scholar]
  8. Dumke, R., Catrein, I., Herrmann, R. & Jacobs, E.(2004). Preference, adaptation and survival of Mycoplasma pneumoniae subtypes in an animal model. Int J Med Microbiol 294, 149–155.[CrossRef] [Google Scholar]
  9. Franzoso, G., Hu, P. C., Meloni, G. A. & Barile, M. F.(1993). The immunodominant 90-kilodalton protein is localized on the terminal tip structure of Mycoplasma pneumoniae. Infect Immun 61, 1523–1530. [Google Scholar]
  10. Hahn, T. W., Krebes, K. A. & Krause, D. C.(1996). Expression in Mycoplasma pneumoniae of the recombinant gene encoding the cytadherence-associated protein HMW1 and identification of HMW4 as a product. Mol Microbiol 19, 1085–1093.[CrossRef] [Google Scholar]
  11. Hansen, E. J., Wilson, R. M. & Baseman, J. B.(1979). Two-dimensional gel electrophoretic comparison of proteins from virulent and avirulent strains of Mycoplasma pneumoniae. Infect Immun 24, 468–475. [Google Scholar]
  12. Hayflick, L.(1965). Tissue cultures and mycoplasmas. Tex Rep Biol Med 23, Suppl 1, 285–303. [Google Scholar]
  13. Hedreyda, C. T., Lee, K. K. & Krause, D. C.(1993). Transformation of Mycoplasma pneumoniae with Tn4001 by electroporation. Plasmid 30, 170–175.[CrossRef] [Google Scholar]
  14. Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C. & Herrmann, R.(1996). Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24, 4420–4449.[CrossRef] [Google Scholar]
  15. Hu, P. C., Collier, A. M. & Clyde, W. A., Jr(1984). Serological comparison of virulent and avirulent Mycoplasma pneumoniae by monoclonal antibodies. Isr J Med Sci 20, 870–873. [Google Scholar]
  16. Inamine, J. M., Loechel, S. & Hu, P. C.(1988). Analysis of the nucleotide sequence of the P1 operon of Mycoplasma pneumoniae. Gene 73, 175–183.[CrossRef] [Google Scholar]
  17. Jacobs, E.(1991).Mycoplasma pneumoniae virulence factors and the immune response. Rev Med Microbiol 2, 83–90. [Google Scholar]
  18. Jacobs, E., Stuhlert, A., Drews, M., Pumpe, K., Schaefer, H. E., Kist, M. & Bredt, W.(1988). Host reactions to Mycoplasma pneumoniae infections in guinea-pigs preimmunized systemically with the adhesin of this pathogen. Microb Pathog 5, 259–265.[CrossRef] [Google Scholar]
  19. Jacobs, E., Vonski, M., Oberle, K., Opitz, O. & Pietsch, K.(1996). Are outbreaks and sporadic respiratory infections by Mycoplasma pneumoniae due to two distinct subtypes? Eur J Clin Microbiol Infect Dis 15, 38–44.[CrossRef] [Google Scholar]
  20. Jaffe, J. D., Berg, H. C. & Church, G. M.(2004). Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4, 59–77.[CrossRef] [Google Scholar]
  21. Kenri, T., Taniguchi, R., Sasaki, Y., Okazaki, N., Narita, M., Izumikawa, K., Umetsu, M. & Sasaki, T.(1999). Identification of a new variable sequence in the P1 cytadhesin gene of Mycoplasma pneumoniae: evidence for the generation of antigenic variation by DNA recombination between repetitive sequences. Infect Immun 67, 4557–4562. [Google Scholar]
  22. Krause, D. C. & Balish, M. F.(2004). Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae. Mol Microbiol 51, 917–924.[CrossRef] [Google Scholar]
  23. Krause, D. C., Leith, D. K., Wilson, R. M. & Baseman, J. B.(1982). Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun 35, 809–817. [Google Scholar]
  24. Layh-Schmitt, G. & Herrmann, R.(1994). Spatial arrangement of gene products of the P1 operon in the membrane of Mycoplasma pneumoniae. Infect Immun 62, 974–979. [Google Scholar]
  25. Layh-Schmitt, G., Podtelejnikov, A. & Mann, M.(2000). Proteins complexed to the P1 adhesin of Mycoplasma pneumoniae. Microbiology 146, 741–747. [Google Scholar]
  26. Lind, K., Benzon, M. W., Jensen, J. S. & Clyde, W. A., Jr(1997). A seroepidemiological study of Mycoplasma pneumoniae infections in Denmark over the 50-year period 1946-1995. Eur J Epidemiol 13, 581–586.[CrossRef] [Google Scholar]
  27. Lipman, R. P., Clyde, W. A., Jr & Denny, F. W.(1969). Characteristics of virulent, attenuated, and avirulent Mycoplasma pneumoniae strains. J Bacteriol 100, 1037–1043. [Google Scholar]
  28. Principi, N. & Esposito, S.(2001). Emerging role of Mycoplasma pneumoniae and Chlamydia pneumoniae in paediatric respiratory-tract infections. Lancet Infect Dis 1, 334–344.[CrossRef] [Google Scholar]
  29. Proft, T. & Herrmann, R.(1994). Identification and characterization of hitherto unknown Mycoplasma pneumoniae proteins. Mol Microbiol 13, 337–348.[CrossRef] [Google Scholar]
  30. Proft, T., Hilbert, H., Layh Schmitt, G. & Herrmann, R.(1995). The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. J Bacteriol 177, 3370–3378. [Google Scholar]
  31. Regula, J. T., Ueberle, B., Boguth, G., Görg, A., Schnölzer, M., Herrmann, R. & Frank, R.(2000). Towards a two-dimensional proteome map of Mycoplasma pneumoniae. Electrophoresis 21, 3765–3780.[CrossRef] [Google Scholar]
  32. Rocha, E. P. & Blanchard, A.(2002). Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res 30, 2031–2042.[CrossRef] [Google Scholar]
  33. Rosengarten, R., Citti, C., Glew, M., Lischewski, A., Droesse, M., Much, P., Winner, F., Brank, M. & Spergser, J.(2000). Host-pathogen interactions in mycoplasma pathogenesis: virulence and survival strategies of minimalist prokaryotes. Int J Med Microbiol 290, 15–25.[CrossRef] [Google Scholar]
  34. Ruland, K., Wenzel, R. & Herrmann, R.(1990). Analysis of three different repeated DNA elements present in the P1 operon of Mycoplasma pneumoniae: size, number and distribution on the genome. Nucleic Acids Res 18, 6311–6317.[CrossRef] [Google Scholar]
  35. Ruland, K., Himmelreich, R. & Herrmann, R.(1994). Sequence divergence in the ORF6 gene of Mycoplasma pneumoniae. J Bacteriol 176, 5202–5209. [Google Scholar]
  36. Sperker, B., Hu, P. & Herrmann, R.(1991). Identification of gene products of the P1 operon of Mycoplasma pneumoniae. Mol Microbiol 5, 299–306.[CrossRef] [Google Scholar]
  37. Su, C. J., Tryon, V. V. & Baseman, J. B.(1987). Cloning and sequence analysis of cytadhesin P1 gene from Mycoplasma pneumoniae. Infect Immun 55, 3023–3029. [Google Scholar]
  38. Su, C. J., Chavoya, A., Dallo, S. F. & Baseman, J. B.(1990). Sequence divergency of the cytadhesin gene of Mycoplasma pneumoniae. Infect Immun 58, 2669–2674. [Google Scholar]
  39. Taylor-Robinson, D.(1996). Infections due to species of Mycoplasma and Ureaplasma: an update. Clin Infect Dis 23, 671–682; quiz 683–684.[CrossRef] [Google Scholar]
  40. Tully, J.(1983). Cloning and filtration techniques for mycoplasmas. In Methods in Mycoplasmology, pp. 173–177. Edited by S. Razin & J. Tully. New York: Academic Press.
  41. Ueberle, B., Frank, R. & Herrmann, R.(2002). The proteome of the bacterium Mycoplasma pneumoniae: comparing predicted open reading frames to identified gene products. Proteomics 2, 754–764.[CrossRef] [Google Scholar]
  42. Wasinger, V. C., Pollack, J. D. & Humphery-Smith, I.(2000). The proteome of Mycoplasma genitalium. Chaps-soluble component. Eur J Biochem 267, 1571–1582.[CrossRef] [Google Scholar]
  43. Weiner, J., 3rd, Herrmann, R. & Browning, G. F.(2000). Transcription in Mycoplasma pneumoniae. Nucleic Acids Res 28, 4488–4496.[CrossRef] [Google Scholar]
  44. Weiner, J., 3rd, Zimmerman, C. U., Gohlmann, H. W. & Herrmann, R.(2003). Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res 31, 6306–6320.[CrossRef] [Google Scholar]
  45. Wenzel, R. & Herrmann, R.(1989). Cloning of the complete Mycoplasma pneumoniae genome. Nucleic Acids Res 17, 7029–7043.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27506-0
Loading
/content/journal/micro/10.1099/mic.0.27506-0
Loading

Data & Media loading...

Supplements

Full multiple alignment 

Perl scripts (archive in .tgz format, 20 kb) 

Input nucleotide sequences used to generate recombinants (archive in .tgz format, 8 kb) 

Results of recoma and hybrida scripts runs (archive in .tgz format, 18 MB) 

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error