1887

Abstract

Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012955-0
2009-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2418.html?itemId=/content/journal/jgv/10.1099/vir.0.012955-0&mimeType=html&fmt=ahah

References

  1. Almeida R. P. P., Bennett G. M., Anhalt M. D., Tsai C. W., O'Grady P. 2009; Spread of an introduced vector-borne banana virus in Hawaii. Mol Ecol 18:136–146 [CrossRef]
    [Google Scholar]
  2. Angly F. E., Felts B., Breitbart M., Salamon P., Edwards R. A., Carlson C., Chan A. M., Haynes M., Kelley S. other authors 2006; The marine viromes of four oceanic regions. PLoS Biol 4:e368 [CrossRef]
    [Google Scholar]
  3. Banda A., Galloway-Haskins R. I., Sandhu T. S., Schat K. A. 2007; Genetic analysis of a duck circovirus detected in commercial Pekin ducks in New York. Avian Dis 51:90–95 [CrossRef]
    [Google Scholar]
  4. Chae C. 2005; A review of porcine circovirus 2-associated syndromes and diseases. Vet J 169:326–336 [CrossRef]
    [Google Scholar]
  5. Cheung A. K. 2003; The essential and nonessential transcription units for viral protein synthesis and DNA replication of porcine circovirus type 2. Virology 313:452–459 [CrossRef]
    [Google Scholar]
  6. Cheung A. K. 2004; Identification of the essential and non-essential transcription units for protein synthesis, DNA replication and infectious virus production of Porcine circovirus type 1. Arch Virol 149:975–988 [CrossRef]
    [Google Scholar]
  7. de Villiers E.-M., zur Hausen H. 2009 TT Viruses – the Still Elusive Human Pathogens Berlin, Germany: Springer;
    [Google Scholar]
  8. Dinsdale E. A., Edwards R. A., Hall D., Angly F., Breitbart M., Brulc J. M., Furlan M., Desnues C., Haynes M. other authors 2008; Functional metagenomic profiling of nine biomes. Nature 452:629–632 [CrossRef]
    [Google Scholar]
  9. Duffy S., Shackelton L. A., Holmes E. C. 2008; Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276
    [Google Scholar]
  10. Finn R. D., Tate J., Mistry J., Coggill P. C., Sammut S. J., Hotz H.-R., Ceric G., Forslund K., Eddy S. R. other authors 2008; The Pfam protein families database. Nucleic Acids Res 36:D281–D288 [CrossRef]
    [Google Scholar]
  11. Gibbs M. J., Smeianov V. V., Steele J. L., Upcroft P., Efimov B. A. 2006; Two families of Rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan genomes. Mol Biol Evol 23:1097–1100 [CrossRef]
    [Google Scholar]
  12. Gronenborn B. 2004; Nanoviruses: genome organisation and protein function. Vet Microbiol 98:103–109 [CrossRef]
    [Google Scholar]
  13. Gutierrez C. 1999; Geminivirus DNA replication. Cell Mol Life Sci 56:313–329 [CrossRef]
    [Google Scholar]
  14. Haible D., Kober S., Jeske H. 2006; Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16 [CrossRef]
    [Google Scholar]
  15. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Hou Y. M., Gilbertson R. L. 1996; Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol 70:5430–5436
    [Google Scholar]
  17. Huson D. H., Auch A. F., Qi J., Schuster S. C. 2007; megan analysis of metagenomic data. Genome Res 17:377–386 [CrossRef]
    [Google Scholar]
  18. Johne R., Raue R., Grund C., Kaleta E. F., Müller H. 2004; Recombinant expression of a truncated capsid protein of beak and feather disease virus and its application in serological tests. Avian Pathol 33:328–336
    [Google Scholar]
  19. Johne R., Fernández-de-Luco D., Höfle U., Müller H. 2006; Genome of a novel circovirus of starlings, amplified by multiply primed rolling-circle amplification. J Gen Virol 87:1189–1195 [CrossRef]
    [Google Scholar]
  20. Kakkola L., Tommiska J., Boele L. C. L., Miettinen S., Blom T., Kekarainen T., Qiu J., Pintel D., Hoeben R. C. other authors 2007; Construction and biological activity of a full-length molecular clone of human Torque teno virus (TTV) genotype 6. FEBS J 274:4719–4730 [CrossRef]
    [Google Scholar]
  21. Kim K. H., Chang H. W., Nam Y. D., Roh S. W., Kim M. S., Sung Y., Jeon C. O., Oh H. M., Bae J. W. 2008; Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl Environ Microbiol 74:5975–5985 [CrossRef]
    [Google Scholar]
  22. Lefeuvre P., Lett J. M., Varsani A., Martin D. P. 2009; Widely conserved recombination patterns among single-stranded DNA Viruses. J Virol 83:2697–2707 [CrossRef]
    [Google Scholar]
  23. Ma C.-M., Hon C.-C., Lam T.-Y., Li V. Y.-Y., Wong C. K.-W., de Oliveira T., Leung F. C.-C. 2007; Evidence for recombination in natural populations of porcine circovirus type 2 in Hong Kong and mainland China. J Gen Virol 88:1733–1737 [CrossRef]
    [Google Scholar]
  24. Mankertz A. 2008; Molecular biology of porcine circoviruses. In Animal Viruses, Molecular Biology pp 355–374Edited by Mettenleiter T. C., Sobrino F. Norwich, UK: Caister Academic Press;
    [Google Scholar]
  25. Mankertz A., Hillenbrand B. 2001; Replication of porcine circovirus type 1 requires two proteins encoded by the viral rep gene. Virology 279:429–438 [CrossRef]
    [Google Scholar]
  26. Mankertz A., Persson F., Mankertz J., Blaess G., Buhk H. J. 1997; Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol 71:2562–2566
    [Google Scholar]
  27. Mankertz A., Hattermann K., Ehlers B., Soike D. 2000; Cloning and sequencing of columbid circovirus (CoCV), a new circovirus from pigeons. Arch Virol 145:2469–2479 [CrossRef]
    [Google Scholar]
  28. Moffat A. S. 1999; Plant pathology: geminiviruses emerge as serious crop threat. Science 286:1835 [CrossRef]
    [Google Scholar]
  29. Nagasaki K., Tomaru Y., Takao Y., Nishida K., Shirai Y., Suzuki H., Nagumo T. 2005; Previously unknown virus infects marine diatom. Appl Environ Microbiol 71:3528–3535 [CrossRef]
    [Google Scholar]
  30. Navidad P. D., Li H., Mankertz A., Meehan B. 2008; Rolling-circle amplification for the detection of active porcine circovirus type 2 DNA replication in vitro . J Virol Methods 152:112–116 [CrossRef]
    [Google Scholar]
  31. Ng T. F. F., Manire C., Borrowman K., Langer T., Ehrhart L., Breitbart M. 2009a; Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J Virol 83:2500–2509 [CrossRef]
    [Google Scholar]
  32. Ng T. F. F., Suedmeyer W. K., Wheeler E., Gulland F., Breitbart M. 2009b; Novel anellovirus discovered from a mortality event of captive California sea lions. J Gen Virol 90:1256–1261 [CrossRef]
    [Google Scholar]
  33. Niagro F. D., Forsthoefel A. N., Lawther R. P., Kamalanathan L., Ritchie B. W., Latimer K. S., Lukert P. D. 1998; Beak and feather disease virus and porcine circovirus genomes: intermediates between the geminiviruses and plant circoviruses. Arch Virol 143:1723–1744 [CrossRef]
    [Google Scholar]
  34. Ninomiya M., Takahashi M., Hoshino Y., Ichiyama K., Simmonds P., Okamoto H. 2009; Analysis of the entire genomes of torque teno midi virus variants in chimpanzees: infrequent cross-species infection between humans and chimpanzees. J Gen Virol 90:347–358 [CrossRef]
    [Google Scholar]
  35. Noteborn M. H. M., Koch G. 1995; Chicken anemia virus-infection – molecular basis of pathogenicity. Avian Pathol 24:11–31 [CrossRef]
    [Google Scholar]
  36. Okamoto H., Mayumi M. 2001; TT virus: virological and genomic characteristics and disease associations. J Gastroenterol 36:519–529 [CrossRef]
    [Google Scholar]
  37. Park Y., Jung S.-E., Tomaru Y., Choi W., Kim Y., Mizumoto H., Nagasaki K., Choi T.-J. 2009; Characterization of the Chaetoceros salsugineum nuclear inclusion virus coat protein gene. Virus Res 142:127–133 [CrossRef]
    [Google Scholar]
  38. Rishi N. 2009; Significant plant virus diseases in India and a glimpse of modern disease management technology. J Gen Plant Pathol 75:1–18 [CrossRef]
    [Google Scholar]
  39. Rosario K., Nilsson C., Lim Y. W., Ruan Y., Breitbart M. 2009; Metagenomic analysis of viruses in reclaimed water. Environ Microbiol in press doi: 10.1111/j.1462-2920.2009.01964.x
    [Google Scholar]
  40. Schuster-Böckler B., Schultz J., Rahmann S. 2004; HMM Logos for visualization of protein families. BMC Bioinformatics 5: 7 [CrossRef]
    [Google Scholar]
  41. Seal S. E., Van Den Bosch F., Jeger M. J. 2006; Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25:23–46 [CrossRef]
    [Google Scholar]
  42. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  43. Tattersall P., Bergoin M., Bloom M. E., Brown K. E., Linden R. M., Muzyczka N., Parrish C. R., Tijssen P. 2005; Family Parvoviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 353–369Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Academic Press;
    [Google Scholar]
  44. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  45. Todd D. 2000; Circoviruses: immunosuppressive threats to avian species: a review. Avian Pathol 29:373–394 [CrossRef]
    [Google Scholar]
  46. Biagini P., Todd D., Bendinelli M., Hino S., Mankertz A., Mishiro S., Niel C., Okamoto H., Raidal S., & other authors. 2005; Family Circoviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 327–341Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball. San Diego, CA: Academic Press;
    [Google Scholar]
  47. van der Walt E., Martin D. P., Varsani A., Polston J. E., Rybicki E. P. 2008; Experimental observations of rapid maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol J 5:104 [CrossRef]
    [Google Scholar]
  48. Varsani A., Shepherd D. N., Monjane A. L., Owor B. E., Erdmann J. B., Rybicki E. P., Peterschmitt M., Briddon R. W., Markham P. G. other authors 2008; Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J Gen Virol 89:2063–2074 [CrossRef]
    [Google Scholar]
  49. Vega Thurber R. L., Barott K. L., Hall D., Liu H., Rodriguez-Mueller B., Desnues C., Edwards R. A., Haynes M., Angly F. E. other authors 2008; Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa . Proc Natl Acad Sci U S A 105:18413–18418 [CrossRef]
    [Google Scholar]
  50. Victoria J. G., Kapoor A., Li L., Blinkova O., Slikas B., Wang C., Naeem A., Zaidi S., Delwart E. 2009; Metagenomic analyses of viruses in the stool of children with acute flaccid paralysis. J Virol 83:4642–4651 [CrossRef]
    [Google Scholar]
  51. Zhou X., Liu Y., Calvert L., Munoz C., Otim-Nape G. W., Robinson D. J., Harrison B. D. 1997; Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78:2101–2111
    [Google Scholar]
  52. Zhou J. Y., Shang S. B., Gong H., Chen Q. X., Wu J. X., Shen H. G., Chen T. F., Guo J. Q. 2005; In vitro expression, monoclonal antibody and bioactivity for capsid protein of porcine circovirus type II without nuclear localization signal. J Biotechnol 118:201–211 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012955-0
Loading
/content/journal/jgv/10.1099/vir.0.012955-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error