1887

Abstract

Banana streak disease is caused by several distinct badnavirus species, one of which is Banana streak Obino l'Ewai virus. Banana streak Obino l'Ewai virus has severely hindered international banana ( spp.) breeding programmes, as new hybrids are frequently infected with this virus, curtailing any further exploitation. This infection is thought to arise from viral DNA integrated in the nuclear genome of (B genome), one of the wild species contributing to many of the banana cultivars currently grown. In order to determine whether the DNA of other badnavirus species is integrated in the genome, PCR-amplified DNA fragments from , and , as well as cultivars ‘Obino l'Ewai’ and ‘Klue Tiparot’, were cloned. In total, 103 clones were sequenced and all had similarity to open reading frame III in the badnavirus genome, although there was remarkable variation, with 36 distinct sequences being recognized with less than 85 % nucleotide identity to each other. There was no commonality in the sequences amplified from and , suggesting that integration occurred following the separation of these species. Analysis of rates of non-synonymous and synonymous substitution suggested that the integrated sequences evolved under a high degree of selective constraint as might be expected for a living badnavirus, and that each distinct sequence resulted from an independent integration event.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80261-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860511.html?itemId=/content/journal/jgv/10.1099/vir.0.80261-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Bakry F., Carreel F., Caruana M.-L., Côte F.-X., Jenny C., Tézenas du Montcel H. 2001; Banana. In Tropical Plant Breeding pp  1–29 Edited by Charrier A., Jacquot M., Hamon S., Nicolas D. Enfield, NH, USA: Science Publishers;
    [Google Scholar]
  3. Bensasson D., Zhang D.-X., Hartl D. L., Hewitt G. M. 2001; Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol Evol 16:314–321 [CrossRef]
    [Google Scholar]
  4. Carreel F., Gonzalez de Leon D., Lagoda P., Lanaud C., Jenny C., Horry J. P., Tezenas du Montcel H. 2002; Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45:679–692 [CrossRef]
    [Google Scholar]
  5. Dahal G., Dahal F., Pasberg-Gauhl C., Hughes J. d. A., Thottapilly G., Lockhart B. E. L. 1999; Evaluation of micropropagated plantain and banana ( Musa spp.) for banana streak badnavirus incidence under field and screenhouse conditions in Nigeria. Ann Appl Biol 134:181–191 [CrossRef]
    [Google Scholar]
  6. Dallot S., Acuna P., Rivera C., Ramirez P., Cote F., Lockhart B. E. L., Caruana M. L. 2001; Evidence that the proliferation stage of micropropagation procedure is determinant in the expression of Banana streak virus integrated into the genome of the FHIA 21 hybrid ( Musa AAAB. Arch Virol 146:2179–2190 [CrossRef]
    [Google Scholar]
  7. Daniells J., Jenny C., Karamura D., Tomekpe K. 2001; Musa logue: a catalogue of Musa germplasm. Diversity in the genus Musa . Compiled by Arnaud E., Sharrock S. International Network for the Improvement of Banana and Plantain
    [Google Scholar]
  8. Gawel N. J., Jarret R. L. 1991; A modified CTAB DNA extraction procedure for Musa and Ipomoea . Plant Mol Biol Rep 9:262–266 [CrossRef]
    [Google Scholar]
  9. Geering A. D. W., McMichael L. A., Dietzgen R. G., Thomas J. E. 2000; Genetic diversity among Banana streak virus isolates from Australia. Phytopathology 90:921–927 [CrossRef]
    [Google Scholar]
  10. Geering A. D. W., Olszewski N. E., Dahal G., Thomas J. E., Lockhart B. E. L. 2001; Analysis of the distribution and structure of integrated Banana streak virus DNA in a range of Musa cultivars. Mol Plant Pathol 2:207–213 [CrossRef]
    [Google Scholar]
  11. Geering A. D. W., Pooggin M. M., Olszewski N. E., Lockhart B. E. L., Thomas J. E. 2005; Characterisation of Banana streak Mysore virus and evidence that its DNA is integrated in the B genome of cultivated Musa . Arch Virol (in press
    [Google Scholar]
  12. Gregor W., Mette M. F., Staginnus C., Matzke M. A., Matzke A. J. M. 2004; A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis , a diploid progenitor of polyploid tobacco. Plant Physiol 134:1191–1199 [CrossRef]
    [Google Scholar]
  13. Harper G., Dahal G., Thottappilly G., Hull R. 1999a; Detection of episomal banana streak badnavirus by IC-PCR. J Virol Methods 79:1–8 [CrossRef]
    [Google Scholar]
  14. Harper G., Osuji J. O., Heslop-Harrison J. S. P., Hull R. 1999b; Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255:207–213 [CrossRef]
    [Google Scholar]
  15. Hughes J. F., Coffin J. M. 2001; Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet 29:487–489 [CrossRef]
    [Google Scholar]
  16. Hull R. 2002 Matthews' Plant Virology , 4th edn. San Diego: Academic Press;
    [Google Scholar]
  17. Hull R., Harper G., Lockhart B. 2000; Viral sequences integrated into plant genomes. Trends Plant Sci 5:362–365 [CrossRef]
    [Google Scholar]
  18. Jakowitsch J., Mette M. F., van der Winden J., Matzke M. A. 1999; Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc Natl Acad Sci U S A 96:13241–13246 [CrossRef]
    [Google Scholar]
  19. Jenny C., Carreel F., Bakry F. 1997; Revision on banana taxonomy: ‘Klue Tiparot’ ( Musa sp) reclassified as a triploid. Fruits 52:83–91
    [Google Scholar]
  20. Jones D. R. 1999; Introduction to banana, abacá and enset. In Diseases of Banana, Abacá and Enset pp  1–36 Edited by Jones D. R. Wallingford, UK: CABI Publishing;
    [Google Scholar]
  21. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  22. Kunii M. M., Kanda M. M., Nagano H. H., Uyeda I. I., Kishima Y. Y., Sano Y. Y. 2004; Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for evolution and integration. BMC Genomics 5:80 [CrossRef]
    [Google Scholar]
  23. Lheureux F., Carreel F., Jenny C., Lockhart B. E. L., Iskra-Caruana M. L. 2003; Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor Appl Genet 106:594–598
    [Google Scholar]
  24. Lockhart B. E., Menke J., Dahal G., Olszewski N. E. 2000; Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J Gen Virol 81:1579–1585
    [Google Scholar]
  25. Matzke M., Gregor W., Mette M. F., Aufsatz W., Kanno T., Jakowitsch J., Matzke A. J. M. 2004; Endogenous pararetroviruses of allotetraploid Nicotiana tabacum and its diploid progenitors, N. sylvestris and N. tomentosiformis . Biol J Linn Soc 82:627–638 [CrossRef]
    [Google Scholar]
  26. Mette M. F., Kanno T., Aufsatz W., Jakowitsch J., van der Winden J., Matzke M. A., Matzke A. J. M. 2002; Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J 21:461–469 [CrossRef]
    [Google Scholar]
  27. Murad L., Bielawski J. P., Matyasek R., Kovarík A., Nichols R. A., Leitch A. R., Lichtenstein C. P. 2004; The origin and evolution of geminivirus-related DNA sequences in Nicotiana . Heredity 92:352–358 [CrossRef]
    [Google Scholar]
  28. Ndowora T., Dahal G., LaFleur D., Harper G., Hull R., Olszewski N. E., Lockhart B. 1999; Evidence that badnavirus infection in Musa can originate from integrated sequences. Virology 255:214–220 [CrossRef]
    [Google Scholar]
  29. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  30. Page R. D. M., Holmes E. C. 1998 Molecular Evolution: a phylogenetic approach Oxford: Blackwell Science;
    [Google Scholar]
  31. Richert-Pöggeler K. R., Noreen F., Schwarzacher T., Harper G., Hohn T. 2003; Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J 22:4836–4845 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustalx windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. White S. E., Habera L. F., Wessler S. R. 1994; Retrotransposons in the flanking regions of normal plant genes: a role for copia -like elements in the evolution of gene structure and expression. Proc Natl Acad Sci U S A 91:11792–11796 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80261-0
Loading
/content/journal/jgv/10.1099/vir.0.80261-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error