1887

Abstract

A thermophilic, glucose-fermenting, strictly anaerobic, rod-shaped bacterium, strain SEBR 6459(T = type strain), was isolated from an African oil-producing well. This organism was identified as a member of the genus on the basis of the presence of the typical outer sheath-like structure (toga) and 16S rRNA signature sequences and its ability to grow on carbohydrates (glucose, arabinose, fructose, lactose, maltose, and xylose). Major differences in its 16S rRNA gene sequence, its lower optimum temperature for growth (66°C), its sodium chloride range for growth (0 to 2.8%), its lack of lactate as an end product from glucose fermentation, and its peritrichous flagella indicate that strain SEBR 6459is not similar to the three previously described species. Furthermore, this organism does not belong to any of the other genera related to the order that have been described. On the basis of these findings, we propose that this strain should be described as a new species, . The type strain of is SEBR 6459 (= DSM 9442).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-308
1995-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-308.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-308&mimeType=html&fmt=ahah

References

  1. Adkins J. P., Cornell L. A., Tanner R. S. 1992; Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiol. J. 10:87–97
    [Google Scholar]
  2. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter strains: towards a phylogenetic classification. Syst. Appl. Microbiol. 15:23–31
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum R. J., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  4. Belyaev S. S., Wolkin R., Kenealy W. R., DeNiro M. J., Epstein S., Zeikus J. G. 1983; Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol. 45:691–697
    [Google Scholar]
  5. Bernard F. P., Connan J., Magot M. 1992; Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques, paper SPE24811,. 467–476Proceedings of the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers Society of Petroleum Engineers Inc.; Richardson, Tex:
    [Google Scholar]
  6. Bhupathiraju V. K., Mclnerney M. J. 1993; Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11:19–34
    [Google Scholar]
  7. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  8. Crolet J. L., Daumas S., Magot M. 1993; pH regulation by sulfate-reducing bacteria, paper 303,. 1–170In Corrosion 93 National Association of Corrosion Engineers; Houston, Tex:
    [Google Scholar]
  9. Davey M. E., Wood W. A., Key R., Nakamura K., Stahl D. A. 1993; Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the "Thermotogales.". Syst. Appl. Microbiol. 16:191–200
    [Google Scholar]
  10. Davydova-Charakhch’yan I. A., Kuznetsova V. G., Mityushina L. L., Belayaev S. S. 1993; Methane-forming bacilli from oil fields of Tartaria and western Siberia. Microbiology (Engl. Transl. Mikrobiologiya) 61:202–207
    [Google Scholar]
  11. Davydova-Charakhch’yan I. A., Mileeva A. N., Mityushina L. L., Belayaev S. S. 1993; Acetogenic bacteria from oil fields of Tataria and western Siberia. Microbiology (Engl. Transl. Mikrobiologiya) 61:208–216
    [Google Scholar]
  12. De Araujo-jorge T. C., Melo Coutinho C. M. L., Vargas De Aguiar L. E. 1992; Sulphate-reducing bacteria associated with biocorrosion: a review. Mem. Inst. Oswaldo Cruz Rio de Janeiro 87:329–337
    [Google Scholar]
  13. Dzierzewicz Z., Cwalina B., Weglarz L., Glab S. 1992; Isolation and evaluation of corrosive aggressivity of wild strains of sulphate-reducing bacteria. Acta Microbiol. Pol. 41:211–221
    [Google Scholar]
  14. Fardeau M. L., Cayol J. L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113:327–332
    [Google Scholar]
  15. Felsenstein J. 1993; PHYLIP (phylogenetic inference package), version 3.51c. Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  16. Ferris F. G., Jack T. R., Bramhill B. J. 1992; Corrosion products associated with attached bacteria at an oil field water injection plant. Can. J. Microbiol. 38:1320–1324
    [Google Scholar]
  17. Huber R, Langworthy T. A., Konig H., Thomm M., Woese C. R., Sleytr U. W., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144:324–333
    [Google Scholar]
  18. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov. represents a new genus of thermophilic eubacteria within the "Thermotogales.". Syst. Appl. Microbiol. 12:32–37
    [Google Scholar]
  19. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the "Thermotogales.". Arch. Microbiol. 154:105–111
    [Google Scholar]
  20. Huser B. A., Patel B. K. C., Morgan H. W., Daniel R. M. 1986; Isolation and characterization of a novel extremely thermophilic, anaerobic chemoor-ganotrophic eubacterium. FEMS Microbiol. Lett. 37:121–127
    [Google Scholar]
  21. Jannasch H. W., Huber R., Belkin S., Stetter K. O. 1988; Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga . Arch. Microbiol. 150:103–104
    [Google Scholar]
  22. Jorgensen B. B. 1990; A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154
    [Google Scholar]
  23. Jorgensen B. B., Bak F. 1991; Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. 57:847–856
    [Google Scholar]
  24. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules,. 21–132In Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  25. Kumar S., Tamura K., Nei M. 1993; MEGA: molecular evolutionary genetic analysis, version 1.0. The Pennsylvania State University; University Park:
    [Google Scholar]
  26. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21: Suppl 3021–3023
    [Google Scholar]
  27. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  28. Magot M., Carreau L., Cayol J. L., Ollivier B., Crolet J. L. Sulphide-producing, not sulphate-reducing anaerobic bacteria presumptively involved in bacterial corrosion. In Sequeira C. A. C. Proceedings of the 3rd European Federation of Corrosion Workshop on Microbiol Corrosion, in press The Institute of Materials; London:
    [Google Scholar]
  29. Marschall C., Frenzel P., Cypionka H. 1993; Influence of oxygen on sulfate-reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159:168–173
    [Google Scholar]
  30. Mclnerney M. J., Westlake D. W. S. 1990; Microbially enhanced oil recovery,. 409–455In Ehrlich H. L., Brierley C. L. Microbial mineral recovery McGraw Hill; New York:
    [Google Scholar]
  31. Meshab M., Premchandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  32. Ng T. K., Weimer P. J., Gawel L. J. 1989; Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the San Miguelito field, Ventura County, California. Geomicrobiol. J. 7:185–192
    [Google Scholar]
  33. Ollivier B., Mah R. A., Garcia J. L., Robinson R. 1985; Isolation and characterization of Methanogenium aggregans sp. nov. Int. J. Syst. Bacteriol. 35:127–130
    [Google Scholar]
  34. Patel B. K. C., Chalcroft C., Morgan H. W., Daniel R. M. 1989; Ultra-structural studies of hot spring bacteria in situ . Syst. Appl. Microbiol. 8:187–193
    [Google Scholar]
  35. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141:63–69
    [Google Scholar]
  36. Pedersen K. 1993; The deep subterranean biosphere. Earth Sci. Rev. 34:243–260
    [Google Scholar]
  37. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett. 113:81–86
    [Google Scholar]
  38. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  39. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan reservoirs. Nature (London) 365:743–745
    [Google Scholar]
  40. Widdel F. 1980; Anaerobacter abbau von Fettsauren und Benzosaure durch neu isolierte Arten sulfatreduzierender Bakterien. Ph.D. thesis. University of Gottingen, Gottingen; Germany:
    [Google Scholar]
  41. Windberger E., Huber R., Trincone A., Fricke H., Stetter K. O. 1989; Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch. Microbiol. 151:506–512
    [Google Scholar]
  42. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 13:161–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-308
Loading
/content/journal/ijsem/10.1099/00207713-45-2-308
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error