1887

Abstract

GcvA binds to three sites in the control region, from base −34 to −69 (site 1), from base −214 to −241 (site 2) and from base −242 to −271 (site 3). Previous results suggested that sites 3 and 2 are required for both GcvA-dependent activation and repression of a :: fusion. However, the results were less clear as to the role of site 1. To determine the role of site 1 in regulation, single and multiple base changes were made in site 1 and tested for their ability to alter GcvA-mediated activation and GcvA/GcvR-mediated repression. Several of the mutants were also tested for effects on GcvA binding to site 1 and the ability of GcvA to bend DNA at site 1. The results are consistent with site 1 playing primarily a role in negative regulation of the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-11-2909
2000-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/11/1462909a.html?itemId=/content/journal/micro/10.1099/00221287-146-11-2909&mimeType=html&fmt=ahah

References

  1. Calvo J. M., Matthews R. G. 1994; The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58:466–490
    [Google Scholar]
  2. Casadaban M. J., Chou J., Cohen S. N. 1980; In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143:971–980
    [Google Scholar]
  3. Estrem S. T., Ross W., Gaal T., Chen Z. W. S., Niu W., Ebright R. H., Gourse R. L. 1999; Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase α subunit. Genes Dev 13:2134–2147 [CrossRef]
    [Google Scholar]
  4. Fried M., Crothers D. M. 1981; Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525 [CrossRef]
    [Google Scholar]
  5. Garner M. M., Revzin A. 1981; A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060 [CrossRef]
    [Google Scholar]
  6. Ghrist A. C., Stauffer G. V. 1995; Characterization of the Escherichia coli gcvR gene encoding a negative regulator of gcv expression. J Bacteriol 177:4980–4984
    [Google Scholar]
  7. Ghrist A. C., Stauffer G. V. 1998; Promoter characterization and constitutive expression of the Escherichia coli gcvR gene. J Bacteriol 180:1803–1807
    [Google Scholar]
  8. Jourdan A. D., Stauffer G. V. 1998; Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 180:4865–4871
    [Google Scholar]
  9. Kikuchi G. 1973; The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1:169–187 [CrossRef]
    [Google Scholar]
  10. Kilstrup M., Meng L. M., Neuhard J., Nygaard P. 1989; Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli. J Bacteriol 171:2124–2127
    [Google Scholar]
  11. Kim J., Zwieb C., Wu C., Adhya S. 1989; Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85:15–23 [CrossRef]
    [Google Scholar]
  12. Lin R., D’Ari R., Newman E. B. 1992; placMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. J Bacteriol 174:1948–1955
    [Google Scholar]
  13. Marinus M. G. 1996; Methylation of DNA. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp. 782–791Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Meng L. M., Nygaard P. 1990; Identification of hypoxanthine and guanine as the co-repressors for the purine regulon genes of Escherichia coli. Mol Microbiol 4:2187–2192 [CrossRef]
    [Google Scholar]
  15. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Mudd S. H., Cantoni G. L. 1964; Biological transmethylation, methyl-group neogenesis and other ‘one-carbon’ metabolic reactions dependent upon tetrahydrofolic acid. In Comprehensive Biochemistry pp. 1–47Edited by Florkin M., Stotz E. H. Amsterdam: Elsevier;
    [Google Scholar]
  17. Panasenko S. M., Cameron J. R., Davis R. W., Lehman I. R. 1977; Five-hundredfold overproduction of DNA ligase after induction of a hybrid lambda lysogen constructed in vitro. Science 196:188–189 [CrossRef]
    [Google Scholar]
  18. Plamann M. D., Rapp W. D., Stauffer G. V. 1983; Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol Gen Genet 192:15–20 [CrossRef]
    [Google Scholar]
  19. Rojo R., Salas M. 1991; A DNA curvature can substitute phage ϕ29 regulatory protein p4 when acting as a transcriptional repressor. EMBO J 10:3429–3438
    [Google Scholar]
  20. Rolfes R. J., Zalkin H. 1988; Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. J Biol Chem 263:19653–19661
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Sarkar G., Sommer S. S. 1990; The ‘megaprimer’ method of site-directed mutagenesis. BioTechniques 8:404–407
    [Google Scholar]
  23. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626 [CrossRef]
    [Google Scholar]
  24. Shimada K., Weisberg R. A., Gottesman M. E. 1972; Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol 63:483–503 [CrossRef]
    [Google Scholar]
  25. Stauffer L. T., Stauffer G. V. 1994; Characterization of the gcv control region from Escherichia coli. J Bacteriol 176:6159–6164
    [Google Scholar]
  26. Stauffer L. T., Stauffer G. V. 1998a; Roles for GcvA-binding sites 3 and 2 and the Lrp-binding region in gcvT::lacZ expression in Escherichia coli. Microbiology 144:2865–2872 [CrossRef]
    [Google Scholar]
  27. Stauffer L. T., Stauffer G. V. 1998b; Spacing and orientation requirements of GcvA-binding sites 3 and 2 and the Lrp-binding region for gcvT::lacZ expression in Escherichia coli. Microbiology 144:1417–1422 [CrossRef]
    [Google Scholar]
  28. Stauffer L. T., Stauffer G. V. 1999; Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the Escherichia coli gcvTHP operon. Microbiology 145:569–576 [CrossRef]
    [Google Scholar]
  29. Stauffer L. T., Ghrist A., Stauffer G. V. 1993; The Escherichia coli gcvT gene encoding the T-protein of the glycine cleavage enzyme system. DNA Seq–J DNA Seq Mapping 3:339–346
    [Google Scholar]
  30. Stauffer L. T., Fogarty S. J., Stauffer G. V. 1994; Characterization of the Escherichia coli gcv operon. Gene 142:17–22 [CrossRef]
    [Google Scholar]
  31. Steiert P. S., Stauffer L. T., Stauffer G. V. 1990; The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol 172:6142–6144
    [Google Scholar]
  32. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  33. Wilson R. L., Stauffer L. T., Stauffer G. V. 1993a; Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175:5129–5134
    [Google Scholar]
  34. Wilson R. L., Steiert P. S., Stauffer G. V. 1993b; Positive regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175:902–904
    [Google Scholar]
  35. Wilson R. L., Urbanowski M. L., Stauffer G. V. 1995; DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol 177:4940–4946
    [Google Scholar]
  36. Wonderling L. D., Stauffer G. V. 1999; The cyclic AMP receptor protein is dependent on GcvA for regulation of the gcv operon. J Bacteriol 181:1912–1919
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-11-2909
Loading
/content/journal/micro/10.1099/00221287-146-11-2909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error