1887
Preview this article:

There is no abstract available.

Keyword(s): Candidatus , list and names
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005545
2022-11-25
2024-05-01
Loading full text...

Full text loading...

References

  1. Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Candidatus List No. 1. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956–4042
    [Google Scholar]
  2. Oren A, Garrity GM. Candidatus List No. 2. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2021; 71:004671 [View Article]
    [Google Scholar]
  3. Oren A, Garrity GM. Candidatus List No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72:005186 [View Article]
    [Google Scholar]
  4. Oren A, Arahal DR, Rosselló-Móra R, Sutcliffe IC, Moore EJB. Emendation of rules 5b, 8, 15, and 22 of the International Code of Nomenclature of Prokaryotes to include the rank of phylum. Int J Syst Evol Microbiol 2021; 71:004851
    [Google Scholar]
  5. Jenkins C, Staley JT. History, classification and cultivation of the Planctomycetes. In Fuerst JA. eds Planctomycetes: Cell Structure, Origins and Biology New York: Springer Science and BusinessMedia; 2013 pp 1–35
    [Google Scholar]
  6. Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I et al. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environ Microbiol 2020; 22:3143–3157
    [Google Scholar]
  7. Prosser JI, Nicol GW. Candidatus Nitrosotaleaceae. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc., in association with Bergey’s Manual Trust; 2016
    [Google Scholar]
  8. Jensen S, Duperron S, Birkeland N-K, Hovland M. Intracellular Oceanospirillales inhabit gills of Acesta bivalves. FEMS Microbiol Ecol 2010; 74:523–533
    [Google Scholar]
  9. Seth-Smith HMB, Dourala N, Fehr A, Qi W, Katharios P et al. Emerging pathogens of gilthead seabream: characterisation and genomic analysis of novel intracellular β-proteobacteria. ISME J 2016; 10:1791–1803
    [Google Scholar]
  10. Couradeau E, Roush D, Guida BS, Garcia-Pichel F. Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla De Mona, Puerto Rico). Biogeosciences 2017; 14:311–324
    [Google Scholar]
  11. Ramalho MO, Martins C, Silva LMR, Martins VG, Bueno OC. Intracellular symbiotic bacteria of Camponotus textor, Forel (Hymenoptera, Formicidae). Curr Microbiol 2017; 74:589–597 [View Article]
    [Google Scholar]
  12. Manzano-Marín NA, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J 2020; 14:259–273
    [Google Scholar]
  13. Mei R, Nobu MK, Narihiro T, Yu J, Sathyagal A et al. Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors. Water Res 2018; 147:403–412
    [Google Scholar]
  14. Cai C, Leu AO, Xie G-J, Guo J, Feng Y et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 2018; 12:1929–1939
    [Google Scholar]
  15. Valente JDM, Saldanha A, Martini R, Lange RR, Baggio RA et al. Candidatus Mycoplasma haemosphiggurus’ a novel haemoplasma species in orange-spined hairy dwarf porcupines (Sphiggurus villosus) from Southern Brazil. Transbound Emerg Dis 2021; 68:1054–1061
    [Google Scholar]
  16. Concord C, Despres L, Vallier A, Balmand S, Miquel C et al. Long-term evolutionary stability of bacterial endosymbiosis in Curculionoidea: Additional evidence of symbiont replacement in the Dryophthoridae family. Mol Biol Evol 2008; 25:859–868
    [Google Scholar]
  17. The IRPCM Phytoplasma/Spiroplasma Working Team—Phytoplasma taxonomy group ’Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 2004; 54:1243–1255
    [Google Scholar]
  18. Ali M, Shaw DR, Albertsen M, Saikaly PE. Comparative genome-centric analysis of freshwater and marine ANAMMOX cultures suggests functional redundancy in nitrogen removal processes. Front Microbiol 2020; 11:1637
    [Google Scholar]
  19. Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R et al. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum. Environ Microbiol 2021; 23:4326–4343 [View Article]
    [Google Scholar]
  20. Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021; 593:553–557
    [Google Scholar]
  21. Lodha T, Narvekar S, Karodi P. Classification of uncultivated anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the phylum Planctomycetes and novel family Candidatus Scalinduaceae fam. nov. to accommodate the genus Candidatus Scalindua. Syst Appl Microbiol 2021; 44:126272
    [Google Scholar]
  22. Montgomery K, Williams TJ, Brettle M, Berengut JF, Zhang E et al. Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils. Environ Microbiol 2021; 23:4276–4294
    [Google Scholar]
  23. Ji M, Williams TJ, Montgomery K, Wong HL, Zaugg J et al. Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. ISME J 2021; 15:2692–2707
    [Google Scholar]
  24. Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T et al. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J 2021; 15:3159–3180 [View Article]
    [Google Scholar]
  25. Epihov DZ, Saltonstall K, Batterman SA, Hedin LO, Hall JS et al. Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proc Natl Acad Sci USA 2021; 118:e2022241118
    [Google Scholar]
  26. Hu W, Pan J, Wang B, Guo J, Li M et al. Metagenomic insights into the metabolism and evolution of a new Thermoplasmata order (Candidatus Gimiplasmatales). Environ Microbiol 2021; 23:3695–3709
    [Google Scholar]
  27. Gilroy R, Ravi A, Getino M, Pursley I, Horton DL et al. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021; 9:e10941 [View Article]
    [Google Scholar]
  28. Williams TJ, Allen MA, Berengut JF, Cavicchioli R. Shedding light on microbial “dark matter”: insights into novel Cloacimonadota and Omnitrophota from an Antarctic lake. Front Microbiol 2021; 12:741077
    [Google Scholar]
  29. Glendinning L, Stewart RD, Pallen MJ, Watson KA, Watson M et al. Author Correction: Assembly of hundreds of novel bacterial genomes from the chicken caecum. Genome Biol 2021; 22:60 [View Article]
    [Google Scholar]
  30. Ruiz-Perez CA, Bertagnolli AD, Tsementzi D, Woyke T, Stewart FJ et al. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: Nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst Appl Microbiol 2021; 44:126185
    [Google Scholar]
  31. Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature 2021; 591:445–450
    [Google Scholar]
  32. Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. ISME J 2021; 15:1680–1694 [View Article]
    [Google Scholar]
  33. Okubo T, Toyoda A, Fukuhara K, Uchiyama I, Harigaya Y et al. The physiological potential of anammox bacteria as revealed by their core genome structure. DNA Res 2021; 28:dsaa028 [View Article]
    [Google Scholar]
  34. McAllister SM, Vandzura R, Keffer JL, Polson SW, Chan CS. Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents. ISME J 2021; 15:1271–1286 [View Article]
    [Google Scholar]
  35. Holland SI, Ertan H, Montgomery K, Manefield MJ, Lee M. Novel dichloromethane-fermenting bacteria in the Peptococcaceae family. ISME J 2021; 15:1709–1721 [View Article]
    [Google Scholar]
  36. Kumar D, Kumar G, Jagadeeshwari U, Sasikala C, Ramana CV. Candidatus Laterigemmans baculatus” gen. nov. sp. nov., the first representative of rod shaped planctomycetes with lateral budding in the family Pirellulaceae. Syst Appl Microbiol 2021; 44:126188 [View Article]
    [Google Scholar]
  37. Zhang W, Wang Y, Liu L, Pan Y, Lin W. Identification and genomic characterization of two previously unknown magnetotactic Nitrospirae. Front Microbiol 2021; 12:690052
    [Google Scholar]
  38. Gotoh Y, Hayashi T. Candidatus Mesenet longicola”: novel endosymbionts of Brontispa longissima that induce cytoplasmic incompatibility. Microb Ecol 2021; 82:512–522
    [Google Scholar]
  39. Picone N, Blom P, Hogendoorn C, Frank J, van Alen T et al. Metagenome assembled genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 2021; 12:666929
    [Google Scholar]
  40. Batinovic S, Rose JJA, Ratcliffe J, Seviour RJ, Petrovski S. Cocultivation of an ultrasmall environmental parasitic bacterium with lytic ability against bacteria associated with wastewater foams. Nat Microbiol 2021; 6:702–711 [View Article]
    [Google Scholar]
  41. Mueller AJ, Jung M-Y, Strachan CR, Herbold CW, Kirkegaard RH et al. Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. ISME J 2021; 15:732–745 [View Article]
    [Google Scholar]
  42. Picone N, Pol A, Mesman R, Cremers G et al. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. ISME J 2021; 15:1150–1164 [View Article]
    [Google Scholar]
  43. Hwang Y, Schulze-Makuch D, Arens FL, Saenz JS, Adam PS et al. Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. Microbiome 2021; 9:234
    [Google Scholar]
  44. Luo Z-H, Narsing Rao MP, Chen H, Hua Z-S, Li Q et al. Genomic insights of “Candidatus Nitrosocaldaceae” based on nine new metagenome-assembled genomes, including “Candidatus Nitrosothermus” gen nov. and two new species of “Candidatus Nitrosocaldus.”. Front Microbiol 2021; 11:608832
    [Google Scholar]
  45. Williams TJ, Allen MA, Ivanova N, Huntemann M, Haque S et al. Genome analysis of a verrucomicrobial endosymbiont with a tiny genome discovered in an Antarctic lake. Front Microbiol 2021; 12:674758
    [Google Scholar]
  46. van Vliet DM, von Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinnighe Damsté JS et al. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol 2021; 23:2834–2857
    [Google Scholar]
  47. Castelli M, Lanzoni O, Nardi T, Lometto S, Modeo L et al. Candidatus Sarmatiella mevalonica’ endosymbiont of the ciliate Paramecium provides insights on evolutionary plasticity among Rickettsiales. Environ Microbiol 2021; 23:1684–1701
    [Google Scholar]
  48. Farag IF, Zhao R, Biddle JF. Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Microbiol 2021; 87:e02584-20 [View Article]
    [Google Scholar]
  49. Singh A, Schnürer A, Westerholm M. Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environ Microbiol 2021; 23:1620–1637
    [Google Scholar]
  50. Loh HQ, Hervé V, Brune A. Metabolic potential for reductive acetogenesis and a novel energy-converting [NiFe] hydrogenase in Bathyarchaeia from termite guts – a genome-centric analysis. Front Microbiol 2021; 11:635786
    [Google Scholar]
  51. Cui G, Zhou Y, Li W, Gao Z, Huang J et al. A novel bacterial phylum that participates in carbon and osmolyte cycling in the Challenger Deep sediments. Environ Microbiol 2021; 23:3758–3772
    [Google Scholar]
  52. Palomares-Rius JE, Gutiérrez-Gutiérrez C, Mota M, Bert W, Claeys M et al. Candidatus Xiphinematincola pachtaicus’ gen. nov., sp. nov., an endosymbiotic bacterium associated with nematode species of the genus Xiphinema (Nematoda, Longidoridae). Int J Syst Evol Microbiol 2021; 71:004888
    [Google Scholar]
  53. Crosby FL, Wellehan JFX, Pertierra L, Wendland LD, Lundgren AM et al. Molecular characterization of “Candidatus Anaplasma testudinis”: an emerging pathogen in the threatened Florida gopher tortoise (Gopherus polyphemus). Ticks Tick-borne Dis 2021; 12:101672
    [Google Scholar]
  54. Mau A, Calchi AC, Bittencourt P, Navarrete-Talloni MJ, Sauvé C et al. Molecular surveyand genetic diversity of Bartonella spp. in small Indian mongooses (Urva auropunctata) and their fleas on Saint Kitts, West Indies. Microorganisms 2021; 9:1350
    [Google Scholar]
  55. Lozano-Sardaneta YN, Blum-Domínguez S, Huerta H, Tamay-Segovia P, Fernández-Figueroa EA et al. Detection of Candidatus Bartonella odocoilei n. sp. in Lipoptena mazamae associated with white-tailed deer in Campeche, Mexico. Med Vet Entomol 2021; 35:652–657
    [Google Scholar]
  56. Jiang B-G, Jiang J-F, Yuan T-T, Xu Q et al. Molecular detection of novel Borrelia species, Candidatus Borrelia javanense, in Amblyomma javanense ticks from pangolins. Pathogens 2021; 10:728
    [Google Scholar]
  57. Panwar P, Allen MA, Williams TJ, Haque S, Brazendale S et al. Remarkably coherent population structure for a dominant Antarctic Chlorobium species. Microbiome 2021; 9:231
    [Google Scholar]
  58. Lambrecht N, Stevenson Z, Sheik CS, Pronschinske MA, Tong H et al. Candidatus Chlorobium masyuteum,” a novel photoferrotrophic green sulfur bacterium enriched from a ferruginous meromictic lake. Front Microbiol 2021; 12:695260 [View Article]
    [Google Scholar]
  59. Bryantseva IA, Grouzdev DS, Krutkina MS, Ashikhmin AA, Kostrikina NA et al. 'Candidatus Chloroploca mongolica’ sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium. FEMS Microbiol Lett 2021; 368:fnab107
    [Google Scholar]
  60. Petriglieri F, Singleton C, Peces M, Petersen JF, Nierychlo M et al. Candidatus Dechloromonas phosphorititropha” and “Ca. Dechloromonas phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems. ISME J 2021; 15:3605–3614
    [Google Scholar]
  61. Zhao HQ, Liu PP, Xue F, Lu M, Qin XC et al. Molecular detection and identification of Candidatus Ehrlichia hainanensis, a novel Ehrlichia species in rodents from Hainan province, China. Biomed Environ Sci 2021; 34:1020–1023
    [Google Scholar]
  62. Félix ML, Muñoz-Leal S, Carvalho LA, Queirolo D, Remesar S et al. Characterization of “Candidatus Ehrlichia Pampeana” in Haemaphysalis juxtakochi ticks and gray brocket deer (Mazama gouazoubira) from Uruguay. Microorganisms 2021; 9:2165
    [Google Scholar]
  63. Thorup C, Petro C, Bøggild A, Ebsen TS, Brokjær S et al. How to grow your cable bacteria: Establishment of a stable single-strain culture in sediment and proposal of Candidatus Electronema aureum GS. Syst Appl Microbiol 2021; 44:126236
    [Google Scholar]
  64. Kristensen JM, Singleton CM, Clegg L-A, Petriglieri F, Nielsen PH. High diversity and functional potential of undescribed “Acidobacteriota” in Danish wastewater treatment plants. Front Microbiol 2021; 12:643950 [View Article]
    [Google Scholar]
  65. Savoie ER, Lanclos VC, Henson MW, Cheng C, Getz EW et al. Ecophysiology of the cosmopolitan OM252 bacterioplankton (Gammaproteobacteria). mSystems 2021; 6:e00276–21
    [Google Scholar]
  66. Cozannet M, Borrel G, Roussel E, Moalic Y, Allioux M et al. New insights into the ecology and physiology of Methanomassiliicoccales from terrestrial and aquatic environments. Microorganisms 2021; 9:30
    [Google Scholar]
  67. Hogendoorn C, Picone N, van Hout F, Vijverberg S, Poghosyan L et al. Draft genome of a novel methanotrophic Methylobacter sp. from the volcanic soils of Pantelleria Island. Antonie van Leeuwenhoek 2021; 114:313–324 [View Article]
    [Google Scholar]
  68. Winkler D, Gfrerer S, Gescher J. Biochemical characterization of recombinant isocitrate dehydrogenase and its putative role in the physiology of an acidophilic micrarchaeon. Microorganisms 2021; 9:2318 [View Article]
    [Google Scholar]
  69. Rasmussen JA, Villumsen KR, Duchêne DA, Puetz LC, Delmont TO et al. Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts. Commun Biol 2021; 4:579
    [Google Scholar]
  70. Pontarolo GH, Kühl LF, Pedrassani D, Campos M, Figueiredo FB et al. Candidatus Mycoplasma haemoalbiventris’, a novel hemoplasma species in white-eared opossums (Didelphis albiventris) from Brazil. Transbound Emerg Dis 2021; 68:565–572
    [Google Scholar]
  71. Vieira RFC, Santos NJR, Valente JDM, Santos LP, Lange RR et al. Candidatus Mycoplasma haematohydrochoerus’, a novel hemoplasma species in capybaras (Hydrochoerus hydrochaeris) from Brazil. Infect Genet Evol 2021; 93:104988
    [Google Scholar]
  72. Collere FCM, Delai RM, Ferrari LDR, da Silva LH, Fogaça PLC et al. Candidatus Mycoplasma haematonasua’ and tick-borne pathogens in ring-tailed coatis (Nasua nasua Linnaeus, 1976) from the Iguaçu National Park, Paraná State, southern Brazil. Transbound Emerg Dis 2021; 68:3222–3229
    [Google Scholar]
  73. Chouaia B, Montagna M, Suma P, Faoro F. Complete genome sequence of Rhynchophorus ferrugineus ectosymbiont “Candidatus Nardonella dryophthoridicola” strain NardRF. Microbiol Res Announc 2021; 10:e00355–21
    [Google Scholar]
  74. Nierychlo M, Singleton CM, Petriglieri F, Thomsen L, Petersen JF et al. Low global diversity of Candidatus Microthrix, a troublesome filamentous organism in full-scale WWTPs. Front Microbiol 2021; 12:690251
    [Google Scholar]
  75. Liu L, Liu M, Jiang Y, Lin W, Luo J. Production and excretion of polyamines to tolerate high ammonia, a case study on soil ammonia-oxidizing archaeon “Candidatus Nitrosocosmicus agrestis.”. mSystems 2021; 6:e01003–20
    [Google Scholar]
  76. Sakoula D, Koch H, Frank J, Jetten MSM, van Kessel MAHJ et al. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. ISME J 2021; 15:1010–1024 [View Article]
    [Google Scholar]
  77. Kashkouli M, Castelli M, Floriano AM, Bandi C, Epis S et al. Characterization of a novel Pantoea symbiont allows inference of a pattern of convergent genome reduction in bacteria associated with Pentatomidae. Environ Microbiol 2021; 23:36–50
    [Google Scholar]
  78. Jones LM, Pease B, Perkins SL, Constable FE, Kinoti WM et al. Candidatus Phytoplasma dypsidis’, a novel taxon associated with a lethal wilt disease of palms in Australia. Int J Syst Evol Microbiol 2021; 71:004818
    [Google Scholar]
  79. Kirdat K, Tiwarekar B, Thorat V, Sathe S, Shouche Y et al. Candidatus Phytoplasma sacchari’, a novel taxon – associated with Sugarcane Grassy Shoot (SCGS) disease. Int J Syst Evol Microbiol 2021; 71:004591
    [Google Scholar]
  80. Rodrigues Jardim B, Kinoti WM, Tran-Nguyen LTT, Gambley C, Rodoni B et al. Candidatus Phytoplasma stylosanthis’, a novel taxon with a diverse host range in Australia, characterised using multilocus sequence analysis of 16S rRNA, secA, tuf, and rp genes. Int J Syst Evol Microbiol 2021; 71:004589
    [Google Scholar]
  81. Zhao Y, Wei W, Davis RE, Lee I-M, Bottner-Parker KD. The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ‘Candidatus Phytoplasma tritici.’. Int J Syst Evol Microbiol 2021; 71:004604
    [Google Scholar]
  82. Ward LM, Li-Hau F, Kakegawa T, McGlynn SE. Complex history of aerobic respiration and phototrophy in the Chloroflexota class Anaerolineae revealed by high-quality draft genome of Ca. Roseilinea mizusawaensis AA3_104. Microbes Environ 2021; 36:ME21020
    [Google Scholar]
  83. Owens LA, Colitti B, Hirji I, Pizarro A, Jaffe JE et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat Commun 2021; 12:763
    [Google Scholar]
  84. Orsi WD, Magritsch T, Vargas S, Coskun ÖK, Vuillemin A et al. Genome evolution in bacteria isolated from million-year-old subseafloor sediment. mBio 2021; 12:e0115021 [View Article]
    [Google Scholar]
  85. Thomas SC, Payne D, Tamadonfar KO, Seymour CO, Jiao J-Y et al. Genomics, exometabolomics, and metabolic probing reveal conserved proteolytic metabolism of Thermoflexus hugenholtzii and three candidate species from China and Japan. Front Microbiol 2021; 12:632731
    [Google Scholar]
  86. Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc Natl Acad Sci USA 2021; 118:e2104378118
    [Google Scholar]
  87. Muñoz-Gómez SA, Kreutz M, Hess S. A microbial eukaryote with a unique combinationof purple bacteria and green algae as endosymbionts. Sci Adv 2021; 7:eabg4102
    [Google Scholar]
  88. Ravin NV, Rudenko TS, Smolyakov DD, Beletsky AV, Rakitin AL et al. Comparative genome analysis of the genus Thiothrix involving three novel species, Thiothrix subterranea sp. nov. Ku-5, Thiothrix litoralis sp. nov. AS and “Candidatus Thiothrix anitrata” sp. nov. A52, revealed the conservation of the pathways of dissimilatory sulfur metabolism and variations in the genetic inventory for nitrogen metabolism and autotrophic carbon fixation. Front Microbiol 2021; 12:760289 [View Article]
    [Google Scholar]
  89. Moreira D, Zivanovic Y, López-Archilla AI, Iniesto M, López-García P. Reductive evolution and unique predatory mode in the CPR predatory bacterium Vampirococcus lugosii. Nat Commun 2021; 12:2454
    [Google Scholar]
  90. Song Y, Jiang C-Y, Liang Z-L, Zhu H-Z, Jiang Y et al. Candidatus Kaistella beijingensis sp. nov., isolated from a municipal wastewater treatment plant, is involved in sludge foaming. Appl Environ Microbiol 2021; 87:e01534–21
    [Google Scholar]
  91. Khatri K, Mohite J, Pandit P, Bahulikar RA, Rahalkar MC. Isolation, description and genome analysis of a putative novel Methylobacter species (‘Ca. Methylobacter coli’) Isolated from the faeces of a blackbuck (Indian antelope). Microbiol Res (Pavia) 2021; 12:513–523 [View Article]
    [Google Scholar]
  92. Henkel JV, Vogts A, Werner J, Neu TR, Spröer C et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol 2021; 44:126155
    [Google Scholar]
  93. Ataeian M, Vadlamani A, Haines M, Mosier D, Dong X et al. Proteome and strain analysis of cyanobacterium Candidatus “Phormidium alkaliphilum” reveals traits for success in biotechnology. iScience 2021; 24:103405 [View Article]
    [Google Scholar]
  94. Delmont TO. Discovery of nondiazotrophic Trichodesmium species abundant and widespread in the open ocean. Proc Natl Acad Sci USA 2021; 118:e2112355118
    [Google Scholar]
  95. Hahn MW. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 2009; 59:112–117
    [Google Scholar]
  96. Pitt A, Schmidt J, Koll U, Hahn MW. Aquiluna borgnonia gen. nov., sp. nov., a member of a Microbacteriaceae lineage of freshwater bacteria with small genome sizes. Int J Syst Evol Microbiol 2021; 71:004825
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005545
Loading
/content/journal/ijsem/10.1099/ijsem.0.005545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error