1887

Abstract

The thermo-acidophilic aerobic methanotrophic bacterium, designated strain Kam1 was isolated from an acidic geothermal mud spring in Kamchatka, Russia. Kam1 is Gram-stain-negative, with non-motile cells and non-spore-forming rods, and a diameter of 0.45–0.65 µm and length of 0.8–1.0 µm. Its growth is optimal at the temperature of 55 °C (range, 37–60 °C) and pH of 2.5 (range, pH 1–6), and its maximal growth rate is ~0.11 h (doubling time ~6.3 h). Its cell wall contains peptidoglycan with -diaminopimelic acid. In addition to growing on methane and methanol, strain Kam1 grows on acetone and 2-propanol. Phylogenetically, it forms a distinct group together with other strains and with the candidate genus Methylacidimicrobium as a sister group. These findings support the classification of the strain Kam1 as a representative of a novel species and genus of the phylum . For this strain, we propose the name sp. nov. as the type species within gen. nov. Strain Kam1 (JCM 30608=KCTC 4682) is the type strain.

Funding
This study was supported by the:
  • Norges Forskningsråd (Award 261923)
    • Principle Award Recipient: Nils-KåreBirkeland
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006060
2023-09-27
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/9/ijsem006060.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006060&mimeType=html&fmt=ahah

References

  1. Hedlund BP, Gosink JJ, Staley JT. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 1997; 72:29–38 [View Article] [PubMed]
    [Google Scholar]
  2. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:10 [View Article] [PubMed]
    [Google Scholar]
  3. Choo YJ, Lee K, Song J, Cho JC. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum “Verrucomicrobia”. Int J Syst Evol Microbiol 2007; 57:532–537 [View Article] [PubMed]
    [Google Scholar]
  4. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  5. Ward-Rainey N, Rainey FA, Schlesner H, Stackebrandt E. Assignment of hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria. Microbiology 1995; 141:3247–3250 [View Article]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  7. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 2009; 1:293–306 [View Article] [PubMed]
    [Google Scholar]
  8. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007; 450:879–882 [View Article] [PubMed]
    [Google Scholar]
  9. Erikstad H-A, Ceballos RM, Smestad NB, Birkeland N-K. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol 2019; 10:1129 [View Article] [PubMed]
    [Google Scholar]
  10. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland N-K. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 2008; 105:300–304 [View Article] [PubMed]
    [Google Scholar]
  11. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM et al. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007; 450:874–878 [View Article] [PubMed]
    [Google Scholar]
  12. Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Front Microbiol 2019; 10:1873 [View Article] [PubMed]
    [Google Scholar]
  13. Khadem AF, van Teeseling MCF, van Niftrik L, Jetten MSM, Op den Camp HJM et al. Genomic and physiological analysis of carbon storage in the verrucomicrobial methanotroph “Ca. Methylacidiphilum fumariolicum” SolV. Front Microbiol 2012; 3:345 [View Article] [PubMed]
    [Google Scholar]
  14. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs K-J et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 2011; 193:4438–4446 [View Article] [PubMed]
    [Google Scholar]
  15. Hanson RS, Hanson TE. Methanotrophic bacteria. Microbiol Rev 1996; 60:439–471 [View Article] [PubMed]
    [Google Scholar]
  16. Erikstad H-A, Jensen S, Keen TJ, Birkeland N-K. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph “Methylacidiphilum kamchatkense” Kam1. Extremophiles 2012; 16:405–409 [View Article] [PubMed]
    [Google Scholar]
  17. El Sheikh AF, Poret-Peterson AT, Klotz MG. Characterization of two new genes, amoR and amoD, in the amo operon of the marine ammonia oxidizer Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 2008; 74:312–318 [View Article] [PubMed]
    [Google Scholar]
  18. Kenney GE, Sadek M, Rosenzweig AC. Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 2016; 8:931–940 [View Article] [PubMed]
    [Google Scholar]
  19. Kruse T, Ratnadevi CM, Erikstad H-A, Birkeland N-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genomics 2019; 20:642 [View Article] [PubMed]
    [Google Scholar]
  20. Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op den Camp HJM. Metabolic regulation of “Ca. Methylacidiphilum fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol 2012; 3:266 [View Article] [PubMed]
    [Google Scholar]
  21. Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A et al. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev 2021; 45:fuab007 [View Article] [PubMed]
    [Google Scholar]
  22. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 2014; 16:255–264 [View Article] [PubMed]
    [Google Scholar]
  23. Awala SI, Gwak J-H, Kim Y-M, Kim S-J, Strazzulli A et al. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME J 2021; 15:3636–3647 [View Article] [PubMed]
    [Google Scholar]
  24. Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol 2020; 11:604485 [View Article] [PubMed]
    [Google Scholar]
  25. Carere CR, Hards K, Houghton KM, Power JF, McDonald B et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 2017; 11:2599–2610 [View Article] [PubMed]
    [Google Scholar]
  26. Mohammadi S, Pol A, van Alen TA, Jetten MS, Op den Camp HJ. Methylacidiphilum fumariolicum SolV, a thermoacidophilic “Knallgas” methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J 2017; 11:945–958 [View Article] [PubMed]
    [Google Scholar]
  27. Carere CR, Hards K, Wigley K, Carman L, Houghton KM et al. Growth on formic acid is dependent on intracellular pH homeostasis for the thermoacidophilic methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol 2021; 12:651744 [View Article] [PubMed]
    [Google Scholar]
  28. Schmitz RA, Mohammadi SS, van Erven T, Berben T, Jetten MSM et al. Methanethiol consumption and hydrogen sulfide production by the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. Front Microbiol 2022; 13:857442 [View Article] [PubMed]
    [Google Scholar]
  29. van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 2014; 80:6782–6791 [View Article] [PubMed]
    [Google Scholar]
  30. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R et al. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 2014; 16:1867–1878 [View Article] [PubMed]
    [Google Scholar]
  31. Picone N, Blom P, Wallenius AJ, Hogendoorn C, Mesman R et al. Methylacidimicrobium thermophilum AP8, a novel methane- and hydrogen-oxidizing bacterium isolated from volcanic soil on Pantelleria Island, Italy. Front Microbiol 2021; 12:637762 [View Article] [PubMed]
    [Google Scholar]
  32. Picone N, Blom P, Hogendoorn C, Frank J, van Alen T et al. Metagenome assembled genome of a novel verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 2021; 12:666929 [View Article] [PubMed]
    [Google Scholar]
  33. Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C et al. Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 2015; 6:7116 [View Article] [PubMed]
    [Google Scholar]
  34. Schumann P. Peptidoglycan structure. Method Microbiol 2011; 38:101–129
    [Google Scholar]
  35. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  37. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  39. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  40. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  41. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006060
Loading
/content/journal/ijsem/10.1099/ijsem.0.006060
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error