1887

Abstract

Strain IT6, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud–water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation. Strain IT6 had three complete operons encoding particulate methane monooxygenase and genes encoding group 1d and 3b [NiFe] hydrogenases. Simple carbon–carbon substrates such as ethanol, 2-propanol, acetone, acetol and propane-1,2-diol were used as alternative electron donors and carbon sources. Optimal growth occurred at 50–55°C and between pH 2.0–3.0. The major fatty acids were C, C anteiso, C iso, C and C, and the main polar lipids were phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, diphosphatidylglycerol, some unidentified phospholipids and glycolipids, and other unknown polar lipids. Strain IT6 has a genome size of 2.19 Mbp and a G+C content of 40.70 mol%. Relative evolutionary divergence using 120 conserved single-copy marker genes (bac120) and phylogenetic analyses based on bac120 and 16S rRNA gene sequences showed that strain IT6 is affiliated with members of the proposed order ‘’ of the class in the phylum . It shared a 16S rRNA gene sequence identity of >96 % with cultivated isolates in the genus '' of the family '’, which are thermoacidophilic methane-oxidizing bacteria. ‘ sp.’ Phi (100 %), ‘ V4 (99.02 %) and ‘ sp.’ RTK17.1 (99.02 %) were its closest relatives. Its physiological and genomic properties were consistent with those of other isolated ‘’ species. Based on these results, we propose the name gen. nov., sp. nov. to accommodate strain IT6 (=KCTC 92103=JCM 39288). We also formally propose that the names fam. nov. and ord. nov. to accommodate the genus gen. nov.

Funding
This study was supported by the:
  • National Institute of Agricultural Science, Ministry of Rural Development Administration (Award PJ01700703)
    • Principle Award Recipient: Sung-KeunRhee
  • NRF (Award 2021R1A2C3004015)
    • Principle Award Recipient: RheeSung-Keun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006085
2023-10-04
2024-04-30
Loading full text...

Full text loading...

References

  1. Oremland RS, Culbertson CW. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 1992; 356:421–423 [View Article]
    [Google Scholar]
  2. Kaserer H. Über Die Oxydation Des Wasserstoffes Und Des Methans Durch Mikroorganismen Hartleben; 1905
    [Google Scholar]
  3. Söhngen N. Über Bakterien, Welche Methan ALS Kohlenstoffnahrung und Energiequelle Gebrauchen. Zentrabl Bakteriol Parasitenk Infektionskr 1906; 15:513–517
    [Google Scholar]
  4. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:10 [View Article] [PubMed]
    [Google Scholar]
  5. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007; 450:879–882 [View Article] [PubMed]
    [Google Scholar]
  6. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM et al. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007; 450:874–878 [View Article] [PubMed]
    [Google Scholar]
  7. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland N-K. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 2008; 105:300–304 [View Article] [PubMed]
    [Google Scholar]
  8. Bay SK, Dong X, Bradley JA, Leung PM, Grinter R et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol 2021; 6:246–256 [View Article] [PubMed]
    [Google Scholar]
  9. van Spanning RJM, Guan Q, Melkonian C, Gallant J, Polerecky L et al. Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat Microbiol 2022; 7:2089–2100 [View Article] [PubMed]
    [Google Scholar]
  10. Hedlund BP, Krieg NR, Staley JT, Brown DR, Hedlund BP et al. Phylum XXIII. Verrucomicrobia phyl. nov. In Bergey’s Manual of Systematic Bacteriology: Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes New York, NY: Springer New York; 2010 pp 795–841
    [Google Scholar]
  11. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  12. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  13. Arahal DR, Bull CT, Busse H-J, Christensen H, Chuvochina M et al. Judicial opinions 123-127. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  14. Cavalier-Smith T, Chao E-Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 2020; 257:621–753 [View Article] [PubMed]
    [Google Scholar]
  15. Göker M. Solving the remaining problems with names of classes. Request for an opinion. Int J Syst Evol Microbiol 2022; 72:11 [View Article] [PubMed]
    [Google Scholar]
  16. Anders H, Power JF, MacKenzie AD, Lagutin K, Vyssotski M et al. Limisphaera ngatamarikiensis gen. nov., sp. nov., a thermophilic, pink-pigmented coccus isolated from subaqueous mud of a geothermal hotspring. Int J Syst Evol Microbiol 2015; 65:1114–1121
    [Google Scholar]
  17. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  18. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  19. Göker M. Filling the gaps: missing taxon names at the ranks of class, order and family. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  20. Spring S, Bunk B, Spröer C, Schumann P, Rohde M et al. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J 2016; 10:2801–2816 [View Article] [PubMed]
    [Google Scholar]
  21. Cho J-C, Vergin KL, Morris RM, Giovannoni SJ. Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol 2004; 6:611–621 [View Article] [PubMed]
    [Google Scholar]
  22. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 2009; 1:293–306 [View Article] [PubMed]
    [Google Scholar]
  23. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R et al. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 2014; 16:1867–1878 [View Article] [PubMed]
    [Google Scholar]
  24. van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 2014; 80:6782–6791 [View Article] [PubMed]
    [Google Scholar]
  25. Op den Camp HJM, Mohammadi SS, Pol A, Dunfield PF. Verrucomicrobial methanotrophs. In Kalyuzhnaya MG, Xing X-H. eds Methane Biocatalysis: Paving the Way to Sustainability Cham: Springer International Publishing; 2018 pp 43–55 [View Article]
    [Google Scholar]
  26. Picone N, Blom P, Wallenius AJ, Hogendoorn C, Mesman R et al. Methylacidimicrobium thermophilum AP8, a novel methane- and hydrogen-oxidizing bacterium isolated from volcanic soil on Pantelleria Island, Italy. Front Microbiol 2021; 12:637762 [View Article] [PubMed]
    [Google Scholar]
  27. Picone N, Blom P, Hogendoorn C, Frank J, van Alen T et al. Metagenome assembled genome of a novel Verrucomicrobial methanotroph from Pantelleria Island. Front Microbiol 2021; 12:666929 [View Article] [PubMed]
    [Google Scholar]
  28. Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol 2020; 11:604485 [View Article] [PubMed]
    [Google Scholar]
  29. Awala SI, Gwak J-H, Kim Y-M, Kim S-J, Strazzulli A et al. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME J 2021; 15:3636–3647 [View Article] [PubMed]
    [Google Scholar]
  30. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs K-J et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 2011; 193:4438–4446 [View Article] [PubMed]
    [Google Scholar]
  31. Mohammadi S, Pol A, van Alen TA, Jetten MS, Op den Camp HJ. Methylacidiphilum fumariolicum SolV, a thermoacidophilic “Knallgas” methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J 2017; 11:945–958 [View Article] [PubMed]
    [Google Scholar]
  32. Schmitz RA, Peeters SH, Mohammadi SS, Berben T, van Erven T et al. Simultaneous sulfide and methane oxidation by an extremophile. Nat Commun 2023; 14:2974 [View Article] [PubMed]
    [Google Scholar]
  33. Carere CR, Hards K, Houghton KM, Power JF, McDonald B et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 2017; 11:2599–2610 [View Article] [PubMed]
    [Google Scholar]
  34. Pagaling E, Yang K, Yan T. Pyrosequencing reveals correlations between extremely acidophilic bacterial communities with hydrogen sulphide concentrations, pH and inert polymer coatings at concrete sewer crown surfaces. J Appl Microbiol 2014; 117:50–64 [View Article] [PubMed]
    [Google Scholar]
  35. Li X, Kappler U, Jiang G, Bond PL. The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Front Microbiol 2017; 8:683 [View Article] [PubMed]
    [Google Scholar]
  36. Serkebaeva YM, Kim Y, Liesack W, Dedysh SN. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS One 2013; 8:e63994 [View Article] [PubMed]
    [Google Scholar]
  37. Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L et al. Peatland succession induces a shift in the community composition of sphagnum-associated active methanotrophs. FEMS Microbiol Ecol 2014; 88:596–611 [View Article] [PubMed]
    [Google Scholar]
  38. Ivanova AA, Beletsky AV, Rakitin AL, Kadnikov VV, Philippov DA et al. Closely located but totally distinct: highly contrasting prokaryotic diversity patterns in raised bogs and eutrophic fens. Microorganisms 2020; 8:484 [View Article] [PubMed]
    [Google Scholar]
  39. Dedysh SN, Beletsky AV, Ivanova AA, Danilova OV, Begmatov S et al. Peat-Inhabiting Verrucomicrobia of the order Methylacidiphilales do not possess methanotrophic capabilities. Microorganisms 2021; 9:2566 [View Article]
    [Google Scholar]
  40. Bünger W, Jiang X, Müller J, Hurek T, Reinhold-Hurek B. Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Sci Rep 2020; 10:8692 [View Article] [PubMed]
    [Google Scholar]
  41. Pold G, Conlon EM, Huntemann M, Pillay M, Mikhailova N et al. Genome sequence of Verrucomicrobium sp. strain GAS474, a novel bacterium isolated from soil. Genome Announc 2018; 6:e01451-17 [View Article] [PubMed]
    [Google Scholar]
  42. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International Code of Nomenclature of Prokaryotes. Prokaryotic code (2022 Revision). Int J Syst Evol Microbiol 2022; 73: [View Article] [PubMed]
    [Google Scholar]
  43. Nguyen N-L, Yu W-J, Yang H-Y, Kim J-G, Jung M-Y et al. A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase. J Microbiol 2017; 55:775–782 [View Article] [PubMed]
    [Google Scholar]
  44. Hucker GJ. A New Modification and Application of the Gram Stain. J Bacteriol 1921; 6:395–397 [View Article] [PubMed]
    [Google Scholar]
  45. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 2014; 16:255–264 [View Article] [PubMed]
    [Google Scholar]
  46. Nowak E, Brousseau R, Garrett J, Masson L, Maynard C et al. Characterization of formulated microbial products by denaturing gradient gel electrophoresis, total cellular fatty acid analysis, and DNA microarray analysis. Can J Microbiol 2008; 54:380–390 [View Article] [PubMed]
    [Google Scholar]
  47. Hu HY, Fujie K, Urano K. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J Biosci Bioeng 1999; 87:378–382 [View Article] [PubMed]
    [Google Scholar]
  48. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 2001; 67:4495–4503 [View Article] [PubMed]
    [Google Scholar]
  50. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  51. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  52. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  53. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  54. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  55. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  56. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  57. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  58. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2021; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  59. Erikstad H-A, Ceballos RM, Smestad NB, Birkeland N-K. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol 2019; 10:1129 [View Article] [PubMed]
    [Google Scholar]
  60. Carere CR, Hards K, Wigley K, Carman L, Houghton KM et al. Growth on formic acid is dependent on intracellular pH homeostasis for the thermoacidophilic methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol 2021; 536:651744 [View Article] [PubMed]
    [Google Scholar]
  61. Alexander B, Leach S, Ingledew WJ. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. Microbiology 1987; 133:1171–1179 [View Article]
    [Google Scholar]
  62. Kishimoto N, Inagaki K, Sugio T, Tano T. Growth inhibition of Acidiphilium species by organic acids contained in yeast extract. J Biosci Bioeng 1990; 70:7–10 [View Article]
    [Google Scholar]
  63. Ciaramella M, Napoli A, Rossi M. Another extreme genome: how to live at pH 0. Trends Microbiol 2005; 13:49–51 [View Article] [PubMed]
    [Google Scholar]
  64. Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 2014; 510:148–151 [View Article] [PubMed]
    [Google Scholar]
  65. Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S et al. A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS One 2012; 7:e50480 [View Article] [PubMed]
    [Google Scholar]
  66. Good NM, Vu HN, Suriano CJ, Subuyuj GA, Skovran E et al. Pyrroloquinoline quinone ethanol dehydrogenase in Methylobacterium extorquens AM1 extends lanthanide-dependent metabolism to multicarbon substrates. J Bacteriol 2016; 198:3109–3118 [View Article] [PubMed]
    [Google Scholar]
  67. Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T et al. Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J Biosci Bioeng 2011; 111:547–549 [View Article] [PubMed]
    [Google Scholar]
  68. Gwak J-H, Awala SI, Nguyen N-L, Yu W-J, Yang H-Y et al. Sulfur and methane oxidation by a single microorganism. Proc Natl Acad Sci 2022; 119:e2114799119 [View Article] [PubMed]
    [Google Scholar]
  69. Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K et al. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genomics 2014; 15:914 [View Article] [PubMed]
    [Google Scholar]
  70. Kruse T, Ratnadevi CM, Erikstad H-A, Birkeland N-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genomics 2019; 20:642 [View Article] [PubMed]
    [Google Scholar]
  71. Hou S, Makarova KS, Saw JHW, Senin P, Ly BV et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 2008; 3:26 [View Article] [PubMed]
    [Google Scholar]
  72. Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163–6183 [View Article] [PubMed]
    [Google Scholar]
  73. Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A et al. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev 2021; 45:fuab007 [View Article] [PubMed]
    [Google Scholar]
  74. Mohammadi SS, Schmitz RA, Pol A, Berben T, Jetten MSM et al. The acidophilic methanotroph Methylacidimicrobium tartarophylax 4AC grows as autotroph on H2 under microoxic conditions. Front Microbiol 2019; 10:2352 [View Article] [PubMed]
    [Google Scholar]
  75. Schmitz RA, Mohammadi SS, van Erven T, Berben T, Jetten MSM et al. Methanethiol consumption and hydrogen sulfide production by the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. Front Microbiol 2022; 13:857442 [View Article] [PubMed]
    [Google Scholar]
  76. Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N et al. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 2008; 321:1670–1673 [View Article] [PubMed]
    [Google Scholar]
  77. Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op den Camp HJM. Metabolic regulation of “Ca. Methylacidiphilum Fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol 2012; 3:266 [View Article] [PubMed]
    [Google Scholar]
  78. Bédard C, Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 1989; 53:68–84 [View Article] [PubMed]
    [Google Scholar]
  79. Mohammadi SS, Pol A, van Alen T, Jetten MSM, Op den Camp HJM. Ammonia oxidation and nitrite reduction in the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. Front Microbiol 2017; 8:1901 [View Article] [PubMed]
    [Google Scholar]
  80. Khadem AF, Pol A, Jetten MSM, Op den Camp HJM. Nitrogen fixation by the verrucomicrobial methanotroph “Methylacidiphilum fumariolicum” SolV. Microbiology 2010; 156:1052–1059 [View Article] [PubMed]
    [Google Scholar]
  81. Carlsson S, Wiklund NP, Engstrand L, Weitzberg E, Lundberg JO. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide 2001; 5:580–586 [View Article] [PubMed]
    [Google Scholar]
  82. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  83. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  84. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  85. Li J, Peng X, Zhang L, Jiang L, Chen S. Linking microbial community structure to S, N and Fe biogeochemical cycling in the hot springs at the tengchong geothermal fields, Southwest China. Geomicrobiol J 2016; 33:135–150 [View Article]
    [Google Scholar]
  86. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  87. Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Front Microbiol 2019; 10:1873 [View Article] [PubMed]
    [Google Scholar]
  88. Khadem AF, van Teeseling MCF, van Niftrik L, Jetten MSM, Op den Camp HJM et al. Genomic and physiological analysis of carbon storage in the verrucomicrobial methanotroph “Ca. Methylacidiphilum Fumariolicum” SolV. Front Microbiol 2012; 3:345 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006085
Loading
/content/journal/ijsem/10.1099/ijsem.0.006085
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error