1887

Abstract

is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of isolates from CF patients ( = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients ( = 20) and the environment ( = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of isolates from CF patients. Our data suggest that colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.076950-0
2014-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1615.html?itemId=/content/journal/jmm/10.1099/jmm.0.076950-0&mimeType=html&fmt=ahah

References

  1. Brooke J. S. 2012; Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41 [View Article][PubMed]
    [Google Scholar]
  2. Casano F., Wells J., van der Zwet T. 1988; Fatty acid profiles of Erwinia amylovora as influenced by growth medium, physiological age and experimental conditions. J Phytopathol 121:267–274 [View Article]
    [Google Scholar]
  3. CFFPR 2012; Patient Registry Annual Data Report 2011. Bethesda, MD: Cystic Fibrosis Foundation Patient Registry; http://www.cff.org/UploadedFiles/research/ClinicalResearch/2011-Patient-Registry.pdf
    [Google Scholar]
  4. Degand N., Carbonnelle E., Dauphin B., Beretti J. L., Le Bourgeois M., Sermet-Gaudelus I., Segonds C., Berche P., Nassif X., Ferroni A. 2008; Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting Gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46:3361–3367 [View Article][PubMed]
    [Google Scholar]
  5. Demirev P. A., Ho Y. P., Ryzhov V., Fenselau C. 1999; Microorganism identification by mass spectrometry and protein database searches. Anal Chem 71:2732–2738 [View Article][PubMed]
    [Google Scholar]
  6. Denton M., Todd N. J., Kerr K. G., Hawkey P. M., Littlewood J. M. 1998; Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. J Clin Microbiol 36:1953–1958[PubMed]
    [Google Scholar]
  7. Ernst R. K., Yi E. C., Guo L., Lim K. B., Burns J. L., Hackett M., Miller S. I. 1999; Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286:1561–1565 [View Article][PubMed]
    [Google Scholar]
  8. Ernst R. K., Hajjar A. M., Tsai J. H., Moskowitz S. M., Wilson C. B., Miller S. I. 2003; Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. J Endotoxin Res 9:395–400 [View Article][PubMed]
    [Google Scholar]
  9. Fernández-Olmos A., García-Castillo M., Morosini M. I., Lamas A., Máiz L., Cantón R. 2012; MALDI-TOF MS improves routine identification of non-fermenting Gram negative isolates from cystic fibrosis patients. J Cyst Fibros 11:59–62 [View Article][PubMed]
    [Google Scholar]
  10. Fozo E. M., Kajfasz J. K., Quivey R. G. Jr 2004; Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 238:291–295 [View Article][PubMed]
    [Google Scholar]
  11. Goncalves-Vidigal P., Grosse-Onnebrink J., Mellies U., Buer J., Rath P.-M., Steinmann J. 2011; Stenotrophomonas maltophilia in cystic fibrosis: improved detection by the use of selective agar and evaluation of antimicrobial resistance. J Cyst Fibros 10:422–427 [View Article][PubMed]
    [Google Scholar]
  12. Gonçalves Vidigal P., Schmidt D., Stehling F., Mellies U., Steinmann E., Buer J., Rath P.-M., Steinmann J. 2013; Development of a quantitative immunofluorescence assay for detection of Stenotrophomonas maltophilia antibodies in patients with cystic fibrosis. J Cyst Fibros 12:651–654 [View Article][PubMed]
    [Google Scholar]
  13. Hajjar A. M., Ernst R. K., Tsai J. H., Wilson C. B., Miller S. I. 2002; Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 3:354–359 [View Article][PubMed]
    [Google Scholar]
  14. Marzuillo C., De Giusti M., Tufi D., Giordano A., Del Cimmuto A., Quattrucci S., Mancini C., Villari P. 2009; Molecular characterization of Stenotrophomonas maltophilia isolates from cystic fibrosis patients and the hospital environment. Infect Control Hosp Epidemiol 30:753–758 [View Article][PubMed]
    [Google Scholar]
  15. Mellmann A., Cloud J., Maier T., Keckevoet U., Ramminger I., Iwen P., Dunn J., Hall G., Wilson D.& other authors ( 2008; Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954 [View Article][PubMed]
    [Google Scholar]
  16. Miller L., Berger T. 1985; Bacteria Identification by Gas Chromatography of Whole Cell Fatty Acids. Hewlett-Packard Application Note, pp. 228–241. Palo Alto, CA: Hewlett-Packard Co;
    [Google Scholar]
  17. Moore L. V., Bourne D. M., Moore W. E. 1994; Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44:338–347 [View Article][PubMed]
    [Google Scholar]
  18. Müller K., Schmid E. N., Kroppenstedt R. M. 1998; Improved identification of mycobacteria by using the microbial identification system in combination with additional trimethylsulfonium hydroxide pyrolysis. J Clin Microbiol 36:2477–2480[PubMed]
    [Google Scholar]
  19. O’Sullivan B. P., Freedman S. D. 2009; Cystic fibrosis. Lancet 373:1891–1904 [View Article][PubMed]
    [Google Scholar]
  20. Peltroche-Llacsahuanga H., Schmidt S., Seibold M., Lütticken R., Haase G. 2000; Differentiation between Candida dubliniensis and Candida albicans by fatty acid methyl ester analysis using gas-liquid chromatography. J Clin Microbiol 38:3696–3704[PubMed]
    [Google Scholar]
  21. Pompilio A., Pomponio S., Crocetta V., Gherardi G., Verginelli F., Fiscarelli E., Dicuonzo G., Savini V., D’Antonio D., Di Bonaventura G. 2011; Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC Microbiol 11:159 [View Article][PubMed]
    [Google Scholar]
  22. Raetz C. R., Whitfield C. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700 [View Article][PubMed]
    [Google Scholar]
  23. Rahmati-Bahram A., Magee J. T., Jackson S. K. 1996; Temperature-dependent aminoglycoside resistance in Stenotrophomonas (Xanthomonas) maltophilia; alterations in protein and lipopolysaccharide with growth temperature. J Antimicrob Chemother 37:665–676 [View Article][PubMed]
    [Google Scholar]
  24. Sasser M. 1991 MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Newark, DE: MIDI, Inc;
    [Google Scholar]
  25. Smith L. I. 2002; A tutorial on Principal Components Analysis. Retrieved 21 February 2014. http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
    [Google Scholar]
  26. Valdezate S., Vindel A., Loza E., Baquero F., Cantón R. 2001; Antimicrobial susceptibilities of unique Stenotrophomonas maltophilia clinical strains. Antimicrob Agents Chemother 45:1581–1584 [View Article][PubMed]
    [Google Scholar]
  27. Vasileuskaya-Schulz Z., Kaiser S., Maier T., Kostrzewa M., Jonas D. 2011; Delineation of Stenotrophomonas spp. by multi-locus sequence analysis and MALDI-TOF mass spectrometry. Syst Appl Microbiol 34:35–39 [View Article][PubMed]
    [Google Scholar]
  28. Vidigal P. G., Dittmer S., Steinmann E., Buer J., Rath P.-M., Steinmann J. 2014; Adaptation of Stenotrophomonas maltophilia in cystic fibrosis: molecular diversity, mutation frequency and antibiotic resistance. Int J Med Microbiol 304:613–619 [View Article][PubMed]
    [Google Scholar]
  29. Waters V., Yau Y., Prasad S., Lu A., Atenafu E., Crandall I., Tom S., Tullis E., Ratjen F. 2011; Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 183:635–640 [View Article][PubMed]
    [Google Scholar]
  30. Waters V., Atenafu E. G., Lu A., Yau Y., Tullis E., Ratjen F. 2013; Chronic Stenotrophomonas maltophilia infection and mortality or lung transplantation in cystic fibrosis patients. J Cyst Fibros 12:482–486 [View Article][PubMed]
    [Google Scholar]
  31. WHO 2014; Genes and human disease: Cystic fibrosis. World Health Organization. http://www.who.int/genomics/public/geneticdiseases/en/index2.html#CF
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.076950-0
Loading
/content/journal/jmm/10.1099/jmm.0.076950-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error