Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation.

  1. R Wright,
  2. C Stephens,
  3. G Zweiger,
  4. L Shapiro, and
  5. M R Alley
  1. Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University, California 94305-5427, USA.

Abstract

CcrM, an adenine DNA methyltransferase, is essential for viability in Caulobacter crescentus. The CcrM protein is present only in the predivisional stage of the cell cycle, resulting in cell-cycle-dependent variation of the DNA methylation state of the chromosome. The availability of CcrM is controlled in two ways: (1) the ccrM gene is transcribed only in the predivisional. cell, and (2) the CcrM protein is rapidly degraded prior to cell division. We demonstrate here that CcrM is an important target of the Lon protease pathway in C. crescentus. In a lon null mutant, ccrM transcription is still temporally regulated, but the CcrM protein is present throughout the cell cycle because of a dramatic increase in its stability that results in a fully methylated chromosome throughout the cell cycle. Because the Lon protease is present throughout the cell cycle, it is likely that the level of CcrM in the cell is controlled by a dynamic balance between temporally varied transcription and constitutive degradation. We have shown previously that restriction of CcrM to the C. crescentus predivisional cell is essential for normal morphogenesis and progression through the cell cycle. Comparison of the lon null mutant strain with a strain whose DNA remains fully methylated as a result of constitutive expression of ccrM suggests that the effect of Lon on DNA methylation contributes to several developmental defects observed in the lon mutant. These defects include a frequent failure to complete cell division and loss of precise cell-cycle control of initiation of DNA replication. Other developmental abnormalities exhibited by the lon null mutant, such as the formation of abnormally long stalks, appear to be unrelated to altered chromosome methylation state. The Lon protease thus exhibits pleiotropic effects in C. crescentus growth and development.

Footnotes

| Table of Contents

Life Science Alliance