The Fab-7 element of the bithorax complex attenuates enhancer-promoter interactions in the Drosophila embryo.

  1. J Zhou,
  2. S Barolo,
  3. P Szymanski, and
  4. M Levine
  1. Department of Molecular and Cellular Biology, Division of Genetics, University of California, Berkeley 94720-3201, USA.

Abstract

Enhancers integrate positive and negative regulatory information to direct localized patterns of gene expression in the Drosophila embryo. Here we present evidence for the occurrence of cis regulatory elements that control the levels of gene expression by modulating enhancer-promoter interactions. For this purpose we have investigated the Drosophila bithorax complex (BX-C) because genetic studies suggest that the BX-C contains as much as 300 kb of cis regulatory information. A specialized DNA element, Fab-7, has been proposed to function as a boundary element that separates the iab-6 and iab-7 cis regulatory regions within the Abd-B domain of the BX-C. A 1.2-kb Fab-7 DNA fragment was placed between divergently transcribed white and lacZ test promoters and challenged with several defined enhancers expressed in the early embryo. These studies suggest that Fab-7 functions as an attenuator, which weakens gene expression by reducing enhancer-promoter interactions. Fab-7 selectively blocks distal enhancers in an orientation-independent fashion, and can function when located far from either the distal enhancer or target promoter. Fab-7 may be related to insulator DNAs, which flank genetic loci and functionally isolate neighboring genes. We propose that specialized DNA elements, such as the Fab-7 attenuator, might play a general role in controlling the levels of gene expression by modulating enhancer-promoter interactions.

Footnotes

| Table of Contents

Life Science Alliance