Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells?

  1. D L Black
  1. Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142.

Abstract

The neuron-specific splicing of the mouse c-src N1 exon was analyzed. Model src genes, transiently expressed in HeLa and LA-N-5 neuroblastoma cells, were assayed for the insertion of the 18-nucleotide neuron-specific N1 exon into their product mRNA. The normal clone fails to use this exon in HeLa cells but inserts the exon into 50% of the mature mRNA in LA-N-5 cells. When the exon and flanking intron sequences are placed between two adenovirus exons, the N1 exon is still only inserted in the neural cells. Thus, the neural specificity is a property of the exon itself and its immediate flanking sequences. Simply extending the length of the N1 exon to 109 nucleotides allows its efficient use in HeLa cells, implying that the exon is normally skipped because it is too short to allow spliceosomes to assemble at both ends simultaneously. This model predicts that exclusion of the exon should be sensitive to proteins or mutations that alter the relative strength of the flanking splice sites. Mutations that change these splice sites support this hypothesis.

Footnotes

| Table of Contents

Life Science Alliance