ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens

  1. Jill P. Mesirov1,9
  1. 1Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts 02142, USA;
  2. 2Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA;
  3. 3Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA;
  4. 4Program in Biophysics, Harvard University, Boston, Massachusetts 02115, USA;
  5. 5Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
    1. 6 These authors contributed equally to this work.

    • Present addresses: 7Blueprint Medicines, Cambridge, MA 02142, USA;

    • 8 Sage Bionetworks, Seattle, WA 98109, USA.

    Abstract

    Genome-scale RNAi libraries enable the systematic interrogation of gene function. However, the interpretation of RNAi screens is complicated by the observation that RNAi reagents designed to suppress the mRNA transcripts of the same gene often produce a spectrum of phenotypic outcomes due to differential on-target gene suppression or perturbation of off-target transcripts. Here we present a computational method, Analytic Technique for Assessment of RNAi by Similarity (ATARiS), that takes advantage of patterns in RNAi data across multiple samples in order to enrich for RNAi reagents whose phenotypic effects relate to suppression of their intended targets. By summarizing only such reagent effects for each gene, ATARiS produces quantitative, gene-level phenotype values, which provide an intuitive measure of the effect of gene suppression in each sample. This method is robust for data sets that contain as few as 10 samples and can be used to analyze screens of any number of targeted genes. We used this analytic approach to interrogate RNAi data derived from screening more than 100 human cancer cell lines and identified HNF1B as a transforming oncogene required for the survival of cancer cells that harbor HNF1B amplifications. ATARiS is publicly available at http://broadinstitute.org/ataris.

    Footnotes

    • 9 Corresponding authors

      E-mail mesirov{at}broad.mit.edu

      E-mail William_Hahn{at}dfci.harvard.edu

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.143586.112.

    • Received May 23, 2012.
    • Accepted December 18, 2012.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

    | Table of Contents

    Preprint Server