Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125

  1. Claudine Médigue1,
  2. Evelyne Krin2,
  3. Géraldine Pascal1,2,
  4. Valérie Barbe1,
  5. Andreas Bernsel3,
  6. Philippe N. Bertin4,
  7. Frankie Cheung5,
  8. Stéphane Cruveiller1,
  9. Salvino D'Amico6,
  10. Angela Duilio7,
  11. Gang Fang2,
  12. Georges Feller6,
  13. Christine Ho5,
  14. Sophie Mangenot1,
  15. Gennaro Marino7,
  16. Johan Nilsson3,
  17. Ermenegilda Parrilli7,
  18. Eduardo P.C. Rocha2,
  19. Zoé Rouy1,
  20. Agnieszka Sekowska2,8,
  21. Maria Luisa Tutino7,
  22. David Vallenet1,
  23. Gunnar von Heijne3, and
  24. Antoine Danchin2,9
  1. 1 Genoscope, CNRS-UMR 8030, Atelier de Génomique Comparative, 91006 Evry Cedex, France
  2. 2 Genetics of Bacterial Genomes, Institut Pasteur, 75724 Paris Cedex 15, France
  3. 3 Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
  4. 4 Dynamique, Evolution et Expression de Génomes de Micro-organismes, Université Louis Pasteur, 67000 Strasbourg, France
  5. 5 Computer Centre, The University of Hong Kong, Pokfulam, SAR Hong Kong
  6. 6 Laboratoire de Biochimie, Institut de Chimie B6, Université de Liège, B-4000 Liège-Sart Tilman, Belgium
  7. 7 Dipartimento di Chimica Organica e Biochimica, edificio MB, via Cinthia, Complesso Universitario Monte S. Angelo, 80126 Napoli, Italy
  8. 8 CEA Saclay, Laboratoire Stress Oxydants et Cancer, DSV/DBJC/SBMS, 91191 Gif sur Yvette Cedex, France

Abstract

A considerable fraction of life develops in the sea at temperatures lower than 15°C. Little is known about the adaptive features selected under those conditions. We present the analysis of the genome sequence of the fast growing Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. We find that it copes with the increased solubility of oxygen at low temperature by multiplying dioxygen scavenging while deleting whole pathways producing reactive oxygen species. Dioxygen-consuming lipid desaturases achieve both protection against oxygen and synthesis of lipids making the membrane fluid. A remarkable strategy for avoidance of reactive oxygen species generation is developed by P. haloplanktis, with elimination of the ubiquitous molybdopterin-dependent metabolism. The P. haloplanktis proteome reveals a concerted amino acid usage bias specific to psychrophiles, consistently appearing apt to accommodate asparagine, a residue prone to make proteins age. Adding to its originality, P. haloplanktis further differs from its marine counterparts with recruitment of a plasmid origin of replication for its second chromosome.

Footnotes

  • [Supplemental material is available online at www.genome.org. The sequence data from this study have been submitted to EMBL under accession nos. CR954246 and CR954247. The data are also available at the following Web sites: www.genoscope.cns.fr/agc/mage/psychroscope and http://bioinfo.hku.hk/PsychroList/.]

  • Article and publication are at http://www.genome.org/cgi/doi/10.1101/gr.4126905. Article published online before print in September 2005.

  • 9 Corresponding author. E-mail adanchin{at}pasteur.fr; fax 331-45-68-89-48.

    • Accepted August 4, 2005.
    • Received May 13, 2005.
| Table of Contents

Preprint Server