The effect of age on a visual learning task in the American cockroach

  1. Sheena Brown,1 and
  2. Nicholas Strausfeld
  1. Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA

    Abstract

    Neuronal modifications that accompany normal aging occur in brain neuropils and might share commonalties across phyla including the most successful group, the Insecta. This study addresses the kinds of neuronal modifications associated with loss of memory that occur in the hemimetabolous insect Periplaneta americana. Among insects that display considerable longevity, the American cockroach lives up to 64 wk and reveals specific cellular alterations in its mushroom bodies, higher centers that have been shown to be associated with learning and memory. The present results describe a vision-based learning paradigm, based on a modified Barnes maze, that compares memory in young (10-wk old), middle-aged (30-wk old), and aged adults (50-wk old). We show that not only is the performance of this task during the 14 training trials significantly decremented in aged cockroaches, but that aged cockroaches show significant impairment in successfully completing a crucial test involving cue rotation. Light and electron microscopical examination of the brains of these different age groups reveal major changes in neuron morphology and synaptology in the mushroom body lobes, centers shown to underlie place memory in this taxon.

    Footnotes

    | Table of Contents