Imaging Transcription: Past, Present, and Future

  1. Timothée Lionnet2
  1. 1Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
  2. 2HHMI Janelia Research Campus, Ashburn, Virginia 20147
  3. 3Department of MCB, LKS Biomedical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, California 94720
  1. Correspondence: lionnett{at}janelia.hhmi.org
  1. 4 These authors contributed equally to this work.

Abstract

Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single-molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation.

| Table of Contents