Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNase MRP RNA and essential for cell viability.

  1. M E Schmitt and
  2. D A Clayton
  1. Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427.

Abstract

RNase MRP is a site-specific ribonucleoprotein endoribonuclease that cleaves RNA sequence complementary to mammalian mitochondrial origins of replication in a manner consistent with a role in primer RNA metabolism. The same activity in the yeast Saccharomyces cerevisiae has recently been identified; it cleaves an RNA substrate complementary to a yeast mitochondrial origin of replication at an exact site of linkage of RNA to DNA. We have purified this yeast enzyme further and detect a single, novel RNA of 340 nucleotides associated with the enzymatic activity. The single-copy nuclear gene for this RNA was sequenced and mapped to the right arm of chromosome XIV. The identity of the clone, as encoding the RNA copurifying with enzymatic activity, was confirmed by a match to the directly determined sequence of the RNA. The gene sequence also identified a 340-nucleotide RNA in total yeast RNA and in purified RNase MRP enzyme preparations. Inspection of the sequence of the yeast RNA revealed homologies to the RNA component of mouse RNase MRP, 49% overall with specific regions of much greater similarity. The flanking regions of the gene showed characteristics of an RNA polymerase II transcription unit, including a TATAAA box and a 7/8 match to the yeast cell cycle box UAS. The RNase MRP RNA gene was deleted by insertional replacement and found to be essential for cellular viability, indicating a critical nuclear role for RNase MRP.

Footnotes

| Table of Contents

Life Science Alliance