Maximizing Information on the Environment by Dynamically Controlled Qubit Probes

Analia Zwick, Gonzalo A. Álvarez, and Gershon Kurizki
Phys. Rev. Applied 5, 014007 – Published 25 January 2016

Abstract

We explore the ability of a qubit probe to characterize unknown parameters of its environment. By resorting to the quantum estimation theory, we analytically find the ultimate bound on the precision of estimating key parameters of a broad class of ubiquitous environmental noises (“baths”) which the qubit may probe. These include the probe-bath coupling strength, the correlation time of generic types of bath spectra, and the power laws governing these spectra, as well as their dephasing times T2. Our central result is that by optimizing the dynamical control on the probe under realistic constraints one may attain the maximal accuracy bound on the estimation of these parameters by the least number of measurements possible. Applications of this protocol that combines dynamical control and estimation theory tools to quantum sensing are illustrated for a nitrogen-vacancy center in diamond used as a probe.

  • Figure
  • Figure
  • Figure
  • Received 29 July 2015

DOI:https://doi.org/10.1103/PhysRevApplied.5.014007

© 2016 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Analia Zwick, Gonzalo A. Álvarez, and Gershon Kurizki

  • Weizmann Institute of Science, Rehovot 76100, Israel

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 5, Iss. 1 — January 2016

Subject Areas
Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Applied

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×