• Editors' Suggestion

Fragile versus stable two-dimensional fermionic quasiparticles

Seongjin Ahn and Sankar Das Sarma
Phys. Rev. B 104, 125118 – Published 13 September 2021

Abstract

We provide a comprehensive theoretical investigation of the Fermi liquid quasiparticle description in two-dimensional electron gas interacting via the long-range Coulomb interaction by calculating the electron self-energy within the leading-order approximation, which is exact in the high-density limit. We find that the quasiparticle energy is larger than the imaginary part of the self-energy up to very high energies, implying that the basic Landau quasiparticle picture is robust up to far above the Fermi energy. We find, however, that the quasiparticle picture becomes fragile in a small discrete region around a critical wave vector where the quasiparticle spectral function strongly deviates from the expected quasiparticle Lorentzian line shape with a vanishing renormalization factor. We show that such a non-Fermi liquid behavior arises due to the coupling of quasiparticles with the collective plasmon mode. This situation is somewhat intermediate between the one-dimensional interacting electron gas (i.e., Luttinger liquid), where the Landau Fermi liquid theory completely breaks down since only bosonic collective excitations exist, and three-dimensional electron gas, where quasiparticles are well-defined and more stable against interactions than in one and two dimensions. We use a number of complementary definitions for a quasiparticle to examine the interacting spectral function, contrasting two-dimensional and three-dimensional situations critically.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 9 June 2021
  • Accepted 27 August 2021

DOI:https://doi.org/10.1103/PhysRevB.104.125118

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Seongjin Ahn and Sankar Das Sarma

  • Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 12 — 15 September 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×