Interface dipole and band bending in the hybrid pn heterojunction MoS2/GaN(0001)

Hugo Henck, Zeineb Ben Aziza, Olivia Zill, Debora Pierucci, Carl H. Naylor, Mathieu G. Silly, Noelle Gogneau, Fabrice Oehler, Stephane Collin, Julien Brault, Fausto Sirotti, François Bertran, Patrick Le Fèvre, Stéphane Berciaud, A. T. Charlie Johnson, Emmanuel Lhuillier, Julien E. Rault, and Abdelkarim Ouerghi
Phys. Rev. B 96, 115312 – Published 28 September 2017
PDFHTMLExport Citation

Abstract

Hybrid heterostructures based on bulk GaN and two-dimensional (2D) materials offer novel paths toward nanoelectronic devices with engineered features. Here, we study the electronic properties of a mixed-dimensional heterostructure composed of intrinsic n-doped MoS2 flakes transferred on p-doped GaN(0001) layers. Based on angle-resolved photoemission spectroscopy (ARPES) and high resolution x-ray photoemission spectroscopy (HR-XPS), we investigate the electronic structure modification induced by the interlayer interactions in MoS2/GaN heterostructure. In particular, a shift of the valence band with respect to the Fermi level for MoS2/GaN heterostructure is observed, which is the signature of a charge transfer from the 2D monolayer MoS2 to GaN. The ARPES and HR-XPS revealed an interface dipole associated with local charge transfer from the GaN layer to the MoS2 monolayer. Valence and conduction band offsets between MoS2 and GaN are determined to be 0.77 and 0.51eV, respectively. Based on the measured work functions and band bendings, we establish the formation of an interface dipole between GaN and MoS2 of 0.2 eV.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 26 June 2017

DOI:https://doi.org/10.1103/PhysRevB.96.115312

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Hugo Henck1, Zeineb Ben Aziza1, Olivia Zill2, Debora Pierucci3, Carl H. Naylor4, Mathieu G. Silly5, Noelle Gogneau1, Fabrice Oehler1, Stephane Collin1, Julien Brault6, Fausto Sirotti5, François Bertran5, Patrick Le Fèvre5, Stéphane Berciaud2, A. T. Charlie Johnson4, Emmanuel Lhuillier7, Julien E. Rault5, and Abdelkarim Ouerghi1,*

  • 1Centre de Nanosciences et de Nanotechnologies, Centre National de la Recherche Scientifique (CNRS), Univ. Paris-Sud, Université Paris-Saclay, C2N – Marcoussis, 91460 Marcoussis, France
  • 2Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Unités Mixtes de Recherche (UMR) 7504, F-67000 Strasbourg, France
  • 3CELLS – ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
  • 4Department of Physics and Astronomy, University of Pennsylvania, 209S 33rd Street, Philadelphia, Pennsylvania 19104, USA
  • 5Synchrotron SOLEIL, Saint-Aubin, BP48, 91192 Gif sur Yvette Cedex, France
  • 6Université Côte d’Azur, CNRS, Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications (CRHEA), 06560 Valbonne Sophia Antipolis, France
  • 7Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France

  • *Corresponding author: mailto:abdelkarim.ouerghi@c2n.upsaclay.fr

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 11 — 15 September 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×