Flat electronic bands in long sequences of rhombohedral-stacked graphene

Hugo Henck, Jose Avila, Zeineb Ben Aziza, Debora Pierucci, Jacopo Baima, Betül Pamuk, Julien Chaste, Daniel Utt, Miroslav Bartos, Karol Nogajewski, Benjamin A. Piot, Milan Orlita, Marek Potemski, Matteo Calandra, Maria C. Asensio, Francesco Mauri, Clément Faugeras, and Abdelkarim Ouerghi
Phys. Rev. B 97, 245421 – Published 22 June 2018
PDFHTMLExport Citation

Abstract

The crystallographic stacking order in multilayer graphene plays an important role in determining its electronic properties. It has been predicted that a rhombohedral (ABC) stacking displays a conducting surface state with flat electronic dispersion. In such a flat band, the role of electron-electron correlation is enhanced, possibly resulting in high Tc superconductivity, charge-density wave, or magnetic orders. Clean experimental band-structure measurements of ABC-stacked specimens are missing because the samples are usually too small in size. Here, we directly image the band structure of large multilayer graphene flakes containing approximately 14 consecutive ABC layers. Angle-resolved photoemission spectroscopy experiments reveal the flat electronic bands near the K point extends by 0.13Å1 at the Fermi level at liquid nitrogen temperature. First-principles calculations identify the electronic ground state as an antiferromagnetic state with a band gap of about 40 meV.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 October 2017

DOI:https://doi.org/10.1103/PhysRevB.97.245421

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Hugo Henck1, Jose Avila2, Zeineb Ben Aziza1, Debora Pierucci3, Jacopo Baima4, Betül Pamuk4, Julien Chaste1, Daniel Utt5, Miroslav Bartos5, Karol Nogajewski5, Benjamin A. Piot5, Milan Orlita5, Marek Potemski5, Matteo Calandra4, Maria C. Asensio2, Francesco Mauri6,7, Clément Faugeras5,*, and Abdelkarim Ouerghi1,†

  • 1Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N–Marcoussis, 91460 Marcoussis, France
  • 2Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France
  • 3CELLS - ALBA Synchrotron Radiation Facility, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Barcelona, Spain
  • 4Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, UMR CNRS 7590, Sorbonne Universités, UPMC, Univ. Paris VI, MNHN, IRD, 4 Place Jussieu, 75005 Paris, France
  • 5Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 rue des Martyrs, 38042 Grenoble, France
  • 6Departimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy
  • 7Graphene Laboratories, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy

  • *clement.faugeras@lncmi.cnrs.fr
  • abdelkarim.ouerghi@c2n.upsaclay.fr

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 24 — 15 June 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×