• Open Access

Gravitational and chiral anomalies in the running vacuum universe and matter-antimatter asymmetry

Spyros Basilakos, Nick E. Mavromatos, and Joan Solà Peracaula
Phys. Rev. D 101, 045001 – Published 5 February 2020

Abstract

We present a model for the Universe in which quantum anomalies are argued to play an important dual role: they are responsible for generating matter-antimatter asymmetry in the cosmos, but also provide time-dependent contributions to the vacuum energy density of “running-vacuum” type, which drive the Universe’s evolution. According to this scenario, during the inflationary phase of a string-inspired Universe, and its subsequent exit, the existence of primordial gravitational waves induces gravitational anomalies, which couple to the [Kalb-Ramond (KR)] axion field emerging from the antisymmetric tensor field of the massless gravitational multiplet of the string. Such anomalous CP-violating interactions have two important effects. First, they lead to contributions to the vacuum energy density of the form appearing in the “running vacuum model” (RVM) framework, which are proportional to both, the square and the fourth power of the effective Hubble parameter, H2 and H4 respectively. The H4 terms may lead to inflation, in a dynamical scenario whereby the role of the inflaton is played by the effective scalar-field (“vacuumon”) representation of the RVM. Second, there is an undiluted KR axion at the end of inflation, which plays an important role in generating matter-antimatter asymmetry in the cosmos, through baryogenesis via leptogenesis in models involving heavy right-handed neutrinos. As the Universe exits inflation and enters a radiation-dominated era, the generation of chiral fermionic matter is responsible for the cancellation of gravitational anomalies, thus restoring diffeomorphism invariance for the matter/radiation (quantum) theory, as required for consistency. Chiral U(1) anomalies may remain uncompensated, though, during matter/radiation dominance, providing RVM-like H2 and H4 contributions to the Universe energy density. Finally, in the current era, when the Universe enters a de Sitter phase again, and matter is no longer dominant, gravitational anomalies resurface, leading to RVM-like H2 contributions to the vacuum energy density, which are however much more suppressed, as compared to their counterparts during inflation, due to the smallness of the present era’s Hubble parameter H0. In turn, this feature endows the observed dark energy with a dynamical character that follows the RVM pattern, a fact which has been shown to improve the global fits to the current cosmological observations as compared to the concordance ΛCDM model with its rigid cosmological constant, Λ>0. Our model favors axionic dark matter, the source of which can be the KR axion. The uncompensated chiral anomalies in late epochs of the Universe are argued to play an important role in this, in the context of cosmological models characterized by the presence of large-scale cosmic magnetic fields at late eras.

  • Received 22 July 2019
  • Accepted 8 January 2020

DOI:https://doi.org/10.1103/PhysRevD.101.045001

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Spyros Basilakos1,2, Nick E. Mavromatos3, and Joan Solà Peracaula4

  • 1Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4, 115 27 Athens, Greece
  • 2National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece
  • 3Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, United Kingdom
  • 4Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Avinguda Diagonal 647 E-08028 Barcelona, Catalonia, Spain

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 101, Iss. 4 — 15 February 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×