• Open Access

Microwave cavity searches for low-frequency axion dark matter

Robert Lasenby
Phys. Rev. D 102, 015008 – Published 14 July 2020

Abstract

For low-mass (frequency GHz) axions, dark matter detection experiments searching for an axion-photon-photon coupling generally have suppressed sensitivity, if they use a static background magnetic field. This geometric suppression can be alleviated by using a high-frequency oscillating background field. Here, we present a high-level sketch of such an experiment, using superconducting cavities at GHz frequencies. We discuss the physical limits on signal power arising from cavity properties, and point out cavity geometries that could circumvent some of these limitations. We also consider how backgrounds, including vibrational noise and drive signal leakage, might impact sensitivity. While practical microwave field strengths are significantly below attainable static magnetic fields, the lack of geometric suppression, and higher quality factors, may allow superconducting cavity experiments to be competitive in some regimes.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 March 2020
  • Accepted 12 June 2020

DOI:https://doi.org/10.1103/PhysRevD.102.015008

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & FieldsGravitation, Cosmology & Astrophysics

Authors & Affiliations

Robert Lasenby*

  • Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA

  • *rlasenby@stanford.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 102, Iss. 1 — 1 July 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×