First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope

A. Albert et al. (ANTARES Collaboration)
Phys. Rev. D 96, 082001 – Published 3 October 2017

Abstract

A search for cosmic neutrino sources using the data collected with the ANTARES neutrino telescope between early 2007 and the end of 2015 is performed. For the first time, all neutrino interactions—charged- and neutral-current interactions of all flavors—are considered in a search for point-like sources with the ANTARES detector. In previous analyses, only muon neutrino charged-current interactions were used. This is achieved by using a novel reconstruction algorithm for shower-like events in addition to the standard muon track reconstruction. The shower channel contributes about 23% of all signal events for an E2 energy spectrum. No significant excess over background is found. The most signal-like cluster of events is located at (α,δ)=(343.8°,23.5°) with a significance of 1.9σ. The neutrino flux sensitivity of the search is about E2dΦ/dE=6×109GeVcm2s1 for declinations from 90° up to 42°, and below 108GeVcm2s1 for declinations up to 5°. The directions of 106 source candidates and 13 muon track events from the IceCube high-energy sample events are investigated for a possible neutrino signal and upper limits on the signal flux are determined.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 6 June 2017

DOI:https://doi.org/10.1103/PhysRevD.96.082001

© 2017 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 8 — 15 October 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×