Mechanisms responsible for the photocurrent in bacteriorhodopsin

Eleonora Alfinito and Lino Reggiani
Phys. Rev. E 91, 032702 – Published 4 March 2015

Abstract

Recently, there has been growing interest in the electrical properties of bacteriorhodopsin (bR), a protein belonging to the transmembrane protein family. Several experiments pointed out the role of green light in enhancing the current flow in nanolayers of bR, thus confirming potential applications of this protein in the field of optoelectronics. By contrast, the mechanisms underlying the charge transfer and the associated photocurrent are still far from being understood at a microscopic level. To take into account the structure-dependent nature of the current, in a previous set of papers we suggested a mechanism of sequential tunneling among neighboring amino acids. As a matter of fact, when irradiated with green light, bR undergoes a conformational change at a molecular level. Thus, the role played by the protein tertiary-structure in modeling the charge transfer cannot be neglected. The aim of this paper is to go beyond previous models, in the framework of a new branch of electronics we call proteotronics, which exploits the ability of using proteins as reliable, well-understood materials for the development of novel bioelectronic devices. In particular, the present approach assumes that the conformational change is not the unique transformation the protein undergoes when irradiated by light. Instead, the light can also promote an increase of the protein state free energy that, in turn, should modify its internal degree of connectivity. This phenomenon is here described by the change of the value of an interaction radius associated with the physical interactions among amino acids. The implemented model enables us to achieve a better agreement between theory and experiments in the region of a low applied bias by preserving the level of agreement at high values of applied bias. Furthermore, results provide new insights on the mechanisms responsible for bR photoresponse.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 August 2014
  • Revised 1 December 2014

DOI:https://doi.org/10.1103/PhysRevE.91.032702

©2015 American Physical Society

Authors & Affiliations

Eleonora Alfinito*

  • Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy

Lino Reggiani

  • Dipartimento di Matematica e Fisica, “Ennio de Giorgi,” Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy

  • *eleonora.alfinito@unisalento.it; http://cmtg1.unile.it/eleonora1.html
  • lino.reggiani@unisalento.it

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 3 — March 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×