Non-Hermitian Many-Body Localization

Ryusuke Hamazaki, Kohei Kawabata, and Masahito Ueda
Phys. Rev. Lett. 123, 090603 – Published 30 August 2019
PDFHTMLExport Citation

Abstract

Many-body localization is shown to suppress the imaginary parts of complex eigenenergies for general non-Hermitian Hamiltonians having time-reversal symmetry. We demonstrate that a real-complex transition, which we conjecture occurs upon many-body localization, profoundly affects the dynamical stability of non-Hermitian interacting systems with asymmetric hopping that respects time-reversal symmetry. Moreover, the real-complex transition is shown to be absent in non-Hermitian many-body systems with gain and/or loss that breaks time-reversal symmetry, even though the many-body localization transition still persists.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 December 2018

DOI:https://doi.org/10.1103/PhysRevLett.123.090603

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsCondensed Matter, Materials & Applied PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Ryusuke Hamazaki1, Kohei Kawabata1, and Masahito Ueda1,2

  • 1Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
  • 2RIKEN Center for Emergent Matter Science, Wako 351-0198, Japan

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 123, Iss. 9 — 30 August 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×