• Open Access

Neural Monte Carlo renormalization group

Jui-Hui Chung and Ying-Jer Kao
Phys. Rev. Research 3, 023230 – Published 22 June 2021

Abstract

The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding a systematic way to construct RG transformation for particular systems remains difficult due to the many possible choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in the restricted Boltzmann machine and the weight factor distribution in the RG procedure, that a valid real-space RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo RG algorithm allows for direct computation of the RG flow and critical exponents. Our results establish a solid connection between the RG transformation in physics and the deep architecture in machine learning, paving the way for further interdisciplinary research.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 6 November 2020
  • Revised 7 December 2020
  • Accepted 19 May 2021

DOI:https://doi.org/10.1103/PhysRevResearch.3.023230

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsInterdisciplinary Physics

Authors & Affiliations

Jui-Hui Chung and Ying-Jer Kao

  • Center for Theoretical Physics and Department of Physics, National Taiwan University, Taipei 10607, Taiwan

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 3, Iss. 2 — June - August 2021

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×