Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65(3), 791-798 | DOI: 10.11118/actaun201765030791

Study on the (bio)degradation Process of Bioplastic Materials under Industrial Composting Conditions

Dana Adamcová1, Jakub Elbl2, Jan Zloch1, Magdalena Daria Vaverková1, Antonín Kintl2, David Juřička2, Jan Hladký2, Martin Brtnický2
1 Department of Applied and Landscape Ecology, Faculty of AgriScience, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2 Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno 13, Czech Republic

The objective of this study was to determine the biodegradability of bioplastic materials - sponge cloths - available on the European market. They are labeled as 100 % biodegradable but not certified as compostable. The test was carried out in real composting environment. The project duration was 12 weeks. The emphasis was put on discovering whether the sponge cloths are biodegradable or not. Based on the results, it can be concluded that sponge cloths have decomposed completely (sample C and sample D). Samples A have decomposed but exhibited slower degradation rate. Samples B exhibited the higher degradation rate. The main conclusion from this study is that biodegradation of bioplastics materials strongly depends on both, the environment where they are placed and the chemical nature of the material.

Keywords: waste treatment, composting plant, biodegradation, sponge cloth
Grants and funding:

This study was supported by the IGA - Internal Grant Agency Faculty of AgriSciences MENDELU IP 2017/021.

Prepublished online: July 3, 2017; Published: May 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Adamcová, D., Elbl, J., Zloch, J., Vaverková, M.D., Kintl, A., Juřička, D., Hladký, J., & Brtnický, M. (2017). Study on the (bio)degradation Process of Bioplastic Materials under Industrial Composting Conditions. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis65(3), 791-798. doi: 10.11118/actaun201765030791
Download citation

References

  1. ASTM INTERNATIONAL. 1998. Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. ASTM D 5338-98. West Conshohocken: ASTM INTERNATIONAL.
  2. CATETO, C. A., BARREIRO, M. F. and RODRIGUES, A. E. 2008. Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Ind. Crops Prod., 27(2): 168 - 174. DOI: 10.1016/j.indcrop.2007.07.018 Go to original source...
  3. CALMON, A., DUSSERRE-BRESSON, L., BELLON-MAUREL, V., FEUILLOLEY, P. and SILVESTRE F. 2000. An automated test for measuring polymer biodegradation. Chemosphere, 41(5): 645 - 651. DOI: 10.1016/S0045-6535(99)00491-9 Go to original source...
  4. DAVIS, G. and SONG, J. H. 2006. Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crops Prod., 23(2): 147 - 161. DOI: 10.1016/j.indcrop.2005.05.004 Go to original source...
  5. DIAZ, L. F., BERTOLDI, M. and BIDLINGMAIER, W. 2007. Compost science and technology. Boston: Elsevier.
  6. EUROPEAN COMMITTEE FOR STANDARDIZATION. 2003. Packaging - Evaluation of the disintegration of packaging materials in practical oriented tests under defined composting conditions. EN 14045. Brussels: European Committee for Standardization.
  7. GOMÉZ, E. F. and MICHEL, F. C. 2013. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12): 2583 - 2591. DOI: 10.1016/j.polymdegradstab.2013.09.018 Go to original source...
  8. KIATSIMKUL, P. P., SUPPES, G. J., HSIEH, F. H., LOZADA, Z. and TU, Y. C. 2008. Preparation of high hydroxyl equivalent weight polyols from vegetable oils. Ind. Crops Prod., 27(3): 257 - 264. DOI: 10.1016/j.indcrop.2007.09.006 Go to original source...
  9. FISCHER, S., THUMMLER, K., VOLKERT, B., HETTRICH, K., SCHMIDT, I. and FISCHER, K. 2008. Properties and applications of cellulose acetate. Macromol. Symp., 262(1): 89 - 96. DOI: 10.1002/masy.200850210 Go to original source...
  10. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 2012. Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions-method by analysis of evolved carbon dioxide-part 1: general method. ISO 14855-1. Geneva: ISO.
  11. JINGHUA, Y., DOUG, D., NANCY, M. and RAY, J. 2009. Characterization of cellulose acetate films: Formulation effects on the thermochemical properties and permeability of free films and coating films. Pharma. Technol., 33(3): 88 - 100.
  12. KOPINKE, F. D., REMMLER, M., MACKENZIE, K., MÖDER, M. and WACHSEN, O. 1996. Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polymer Degradation and Stability, 53(3): 329 - 342. DOI: 10.1016/0141-3910(96)00102-4 Go to original source...
  13. LEE, S., CHOE, H., KIM, S., PARK, D., NASIR, A., KIM, B. K. and KIM, K. M. 2016. Complete genome of biodegradable plastics-decomposing Roseateles depolymerans KCTC 42856T (61AT). Journal of Biotechnology, 220: 47 - 48. DOI: 10.1016/j.jbiotec.2016.01.012 Go to original source...
  14. LEJA, K. and LEWANDOWICZ, G. 2010. Polymers biodegradation and biodegradable polymers - a Review. Polish J. of Environ. Stud., 19(2): 255 - 266.
  15. LIANG, C., DAS K. C. and McCLENDON, R. W. 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technol., 86(2): 131 - 137. DOI: 10.1016/S0960-8524(02)00153-0 Go to original source...
  16. MOSTAFA, N. A., FARAG, A. A., ABO-DIEFA, H. M. and TAYE, A. M. 2016. Production of biodegradable plastic from agricultural wastes. Arabian Journal of Chemistry (In Press, Corrected Proof).
  17. SATO, H., FURUHASHI, M., YANG, D., OHTANI, H., TSUGE, S., OKADA, M., TSUNODA, K. and AOI, K. 2001. A novel evaluation method for biodegradability of poly(butylenes succinate-co-butylene adipate) by pyrolysis-gas chromatography. Polymer degradation and stability, 73(2): 327 - 334. DOI: 10.1016/S0141-3910(01)00094-5 Go to original source...
  18. SHAH, A. A., KATO, S., SHINTANI, N., KAMINI, N. R. and NAKAJIMA-KAMBE, T. 2014. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Applied Microbiology and Biotechnology, 98(8): 3437 - 3447. DOI: 10.1007/s00253-014-5558-1 Go to original source...
  19. SIKORSKA, W., MUSIOL, M., NOWAK, B., PAJAK, L., LABUZEK, S., KOWALCZUK, M. and ADAMUS, G. 2015. Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. International Biodeterioration & Biodegradation, 101: 32 - 41. DOI: 10.1016/j.ibiod.2015.03.021 Go to original source...
  20. TABONE, M. D., CREGG, J. J., BECKMAN, E. J. and LANDIS A. E. 2010. Sustainability metrics: life cycle assessment and green design in polymers. Environ. Sci. Technol., 44: 8264 - 8269. DOI: 10.1021/es101640n Go to original source...
  21. TANAKA, R., HIROSE, S. and HATAKEYAMA, H. 2008. Preparation and characterization of polyurethane foams using a palm oil-based polyols. Bioresource Technology, 99(9): 3810 - 3816. DOI: 10.1016/j.biortech.2007.07.007 Go to original source...
  22. TOKIWA, Y. 2002. Biodegradation of polycarbonates. In: MATSUMURA, S., STEINBUCHEL, A. (Eds.) Miscellaneous Biopolymers and Biodegradation of polymers. Vol. 9. Germany: Wiley-VCH Verlag GmbH, pp.417 - 422. Go to original source...
  23. TOKIWA, Y., CALABIA, B. P., UGWU, C. U. and AIBA S. 2009. Biodegradability of plastics. Int. J. Mol. Sci., 10(9): 3722 - 3742. DOI: 10.3390/ijms10093722 Go to original source...
  24. VAVERKOVÁ, M. D., TOMAN, F., ADAMCOVÁ, D. and KOTVICOVÁ, J. 2012. Study of the biodegrability of degradable/biodegradable plastic material in a controlled composting environment. Ecol. Chem. Eng. S, 19(3): 347 - 358. Go to original source...
  25. VAVERKOVÁ, M. D., ADAMCOVÁ, D., KOTOVICOVÁ, J. and TOMAN, F. 2014. Evaluation of biodegradability of plastics bags in composting conditions. Ecol. Chem. Eng. S, 21(1): 45 - 57. Go to original source...
  26. VAVERKOVÁ, M. D. and ADAMCOVÁ, D. 2015. Biodegrability of bioplastic materials in a controlled composting environment. Journal of Ecological Engineering, 16(3): 155 - 160. DOI: 10.12911/22998993/2949 Go to original source...
  27. VERT, M. 2005. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules, 6(2): 538 - 546. DOI: 10.1021/bm0494702 Go to original source...
  28. VÍTĚZOVÁ, M., MACH, P., VÍTĚZ, T. and LO©ÁK, T. 2012. Development of microbial community in the course of composting of garden waste. Acta univ. agric. et silvic. Mendel. Brun., 60(3): 225 - 232. DOI: 10.11118/actaun201260030225 Go to original source...
  29. VÍTĚZOVÁ, M. and VÍTĚZ, T. 2013. Microbiological characteristics of bioaerosol at the composting plant. Acta univ. agric. et silvic. Mendel. Brun., 2013, 61(5): 1479 - 1485. DOI: 10.11118/actaun201361051479 Go to original source...
  30. YANG, H. S., YOON, J. S. and KIM, M. N. 2005. Dependence of biodegradability of plastics in compost on the shape of specimens. Polymer degradation and stability, 87(1): 131 - 135. DOI: 10.1016/j.polymdegradstab.2004.07.016 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.