Advertisement
No access
Research Article

An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae

Science
20 Jan 2012
Vol 335, Issue 6066
pp. 308-313

Sourced from Seaweed

Using seaweed as a raw material for biofuels has received relatively little attention, in part because their primary sugar constituent, alginate, is not readily fermented by industrially tractable microbes. Wargacki et al. (p. 308; see the cover) now demonstrate that metabolically engineered bacteria can degrade seaweed and subsequently ferment the sugars into ethanol at laboratory scale.

Abstract

Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36–kilo–base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (wargacki-som.pdf)

References and Notes

1
Stephanopoulos G., Challenges in engineering microbes for biofuels production. Science 315, 801 (2007).
2
G. Roesijadi, S. B. Jones, L. J. Snowden-Swan, Y. Zhu, “Macroalgae as a Biomass Feedstock: A Preliminary Analysis,” prepared for the U.S. Department of Energy under contract DE-AC05-76RL01830 by Pacific Northwest National Laboratory (2010).
3
Somerville C., Youngs H., Taylor C., Davis S. C., Long S. P., Feedstocks for lignocellulosic biofuels. Science 329, 790 (2010).
4
Adams J. M., Gallagher J., Donnison I. S., Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21, 569 (2008).
5
Horn I. M. A. S. J., Ostgaard K., Production of ethanol from mannitol by Zymobacter palmae. J. Ind. Microbiol. Biotechnol. 24, 51 (2000).
6
Horn S. J., Aasen I. M., Ostgaard K., Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25, 249 (2000).
7
K. I. Draget, O. Smidsrod, G. Skjak-Braek, in Polysaccharides and Polyamides in the Food Industry. Properties, Production, and Patents, A. Steinbuchel, S. K. Rhee, Eds. (Wiley–VCH Verlag GmbH KGaA, Weiheim, 2005), pp. 1–30.
8
Wong T. Y., Preston L. A., Schiller N. L., Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 54, 289 (2000).
9
Ochiai A., Yamasaki M., Mikami B., Hashimoto W., Murata K., Crystallization and preliminary x-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 486 (2006).
10
Preiss J., Ashwell G., Alginic acid metabolism in bacteria. II. The enzymatic reduction of 4-deoxy-L-erythro-5-hexoseulose uronic acid to 2-keto-3-deoxy-D-gluconic acid. J. Biol. Chem. 237, 317 (1962).
11
Takase R., Ochiai A., Mikami B., Hashimoto W., Murata K., Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochim. Biophys. Acta 1804, 1925 (2010).
12
Takeda H., Yoneyama F., Kawai S., Hashimoto W., Murata K., Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ. Sci. 4, 2575 (2011).
13
Alper H., Stephanopoulos G., Engineering for biofuels: Exploiting innate microbial capacity or importing biosynthetic potential? Nat. Rev. Microbiol. 7, 715 (2009).
14
Atsumi S., Hanai T., Liao J. C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86 (2008).
15
Bond-Watts B. B., Bellerose R. J., Chang M. C., Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222 (2011).
16
Dellomonaco C., Clomburg J. M., Miller E. N., Gonzalez R., Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355 (2011).
17
Ohta K., Beall D. S., Mejia J. P., Shanmugam K. T., Ingram L. O., Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57, 893 (1991).
18
Lee H. Y., Harvey C. J., Cane D. E., Khosla C., Improved precursor-directed biosynthesis in E. coli via directed evolution. J. Antibiot. (Tokyo) 64, 59 (2011).
19
Pfeifer B. A., Admiraal S. J., Gramajo H., Cane D. E., Khosla C., Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790 (2001).
20
Ajikumar P. K., et al., Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70 (2010).
21
Alper H., Miyaoku K., Stephanopoulos G., Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23, 612 (2005).
22
Leonard E., et al., Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5, 257 (2008).
23
Martin V. J., Pitera D. J., Withers S. T., Newman J. D., Keasling J. D., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796 (2003).
24
Steen E. J., et al., Microbial production of fatty-acid–derived fuels and chemicals from plant biomass. Nature 463, 559 (2010).
25
Schirmer A., Rude M. A., Li X., Popova E., del Cardayre S. B., Microbial biosynthesis of alkanes. Science 329, 559 (2010).
26
Skraly F. A., Lytle B. L., Cameron D. C., Construction and characterization of a 1,3-propanediol operon. Appl. Environ. Microbiol. 64, 98 (1998).
27
Yim H., et al., Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445 (2011).
28
Lynd L. R., van Zyl W. H., McBride J. E., Laser M., Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 16, 577 (2005).
29
Li J. W., et al., Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Mar. Drugs 9, 109 (2011).
30
He S. Y., Lindeberg M., Chatterjee A. K., Collmer A., Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu. Proc. Natl. Acad. Sci. U.S.A. 88, 1079 (1991).
31
Kazemi-Pour N., Condemine G., Hugouvieux-Cotte-Pattat N., The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4, 3177 (2004).
32
Fujiyama K., Maki H., Kinoshita S., Yoshida T., Purification and characterization of the recombinant alginate lyase from Pseudomonas sp. leaked by Escherichia coli upon addition of glycine. FEMS Microbiol. Lett. 126, 19 (1995).
33
Klemm P., Hjerrild L., Gjermansen M., Schembri M. A., Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol. Microbiol. 51, 283 (2004).
34
van der Woude M. W., Henderson I. R., Regulation and function of Ag43 (flu). Annu. Rev. Microbiol. 62, 153 (2008).
35
Henderson I. R., Owen P., The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. J. Bacteriol. 181, 2132 (1999).
36
Kjaergaard K., Hasman H., Schembri M. A., Klemm P., Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system. J. Bacteriol. 184, 4197 (2002).
37
Hashimoto W., Kawai S., Murata K., Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications. Bioeng. Bugs 1, 97 (2010).
38
Hugouvieux-Cotte-Pattat N., Reverchon S., Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937. Mol. Microbiol. 41, 1125 (2001).
39
Hashimoto W., Miyake O., Momma K., Kawai S., Murata K., Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J. Bacteriol. 182, 4572 (2000).
40
Ochiai A., Hashimoto W., Murata K., A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: Molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res. Microbiol. 157, 642 (2006).
41
Blot N., Berrier C., Hugouvieux-Cotte-Pattat N., Ghazi A., Condemine G., The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J. Biol. Chem. 277, 7936 (2002).
42
Lau M. W., Dale B. E., Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc. Natl. Acad. Sci. U.S.A. 106, 1368 (2009).
43
Yomano L. P., York S. W., Shanmugam K. T., Ingram L. O., Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol. Lett. 31, 1389 (2009).
44
Datsenko K. A., Wanner B. L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97, 6640 (2000).
45
Zhang Z., et al., Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp. 510. Carbohydr. Res. 339, 1475 (2004).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 335 | Issue 6066
20 January 2012

Submission history

Received: 27 September 2011
Accepted: 15 November 2011
Published in print: 20 January 2012

Permissions

Request permissions for this article.

Acknowledgments

This work is supported by the DOE under Advanced Research Projects Agency–Energy (ARPA-E) award DE-AR0000006 and by the CORFO INNOVA CHILE (código 09CTEI-6866). We thank M. Polz (Department of Civil and Environmental Engineering, Massachussetts Institute of Technology) for the kind gift of the V. splendidus strain. We thank R. Bailey for important discussion on microbial engineering. We also thank A. Wahler for critical review and editing of the manuscript. The assistance of A. Gill for in vitro characterization of Oal enzymes is greatly appreciated. Patents describing components of this work can be found under U.S. patent application nos. 12/245537, 12/361293, 12/899419, 61/427077, and 61/436173. This report was prepared as an account of work sponsored by an agency of the U.S. government. Neither the U.S. government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. government or any agency thereof.

Authors

Affiliations

Adam J. Wargacki*
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Effendi Leonard*
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Maung Nyan Win*
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Drew D. Regitsky
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Christine Nicole S. Santos
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Peter B. Kim
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Susan R. Cooper
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Ryan M. Raisner
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Asael Herman
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Present address: Biolojic Design, Mapo 11, Tel Aviv 63577, Israel
Alicia B. Sivitz
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Present address: Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, Institut de Biologie Intégrative des Plantes, F-34730 Montpellier cedex 2, France.
Arun Lakshmanaswamy
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
Yuki Kashiyama
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.
BAL Chile S.A., La Quebrada No. 1005, Puerto Varas 5550658, Chile.
BAL Biofuels S.A., Alcántara 200, piso 6, Las Condes, Santiago 7550159, Chile.
David Baker
Biomolecular Structure and Design (BMSD), Department of Biochemistry, University of Washington, J Wing, Health Sciences Building, Post Office Box 357350, Seattle, WA 98195, USA.
Yasuo Yoshikuni§ [email protected]
Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.

Notes

*
These authors contributed equally to this work.
§
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A Review of Biohydrogen Production from Saccharina japonica, Fermentation, 9, 3, (242), (2023).https://doi.org/10.3390/fermentation9030242
    Crossref
  2. Aislamiento de nanocelulosa 2D a partir de la pared celular de Sargassum spp, Quimica Hoy, 11, 04, (19-27), (2023).https://doi.org/10.29105/qh11.04-307
    Crossref
  3. The arabinose transporter MtLat-1 is involved in hemicellulase repression as a pentose transceptor in Myceliophthora thermophila, Biotechnology for Biofuels and Bioproducts, 16, 1, (2023).https://doi.org/10.1186/s13068-023-02305-3
    Crossref
  4. Design of a stable ethanologenic bacterial strain without heterologous plasmids and antibiotic resistance genes for efficient ethanol production from concentrated dairy waste, Biotechnology for Biofuels and Bioproducts, 16, 1, (2023).https://doi.org/10.1186/s13068-023-02298-z
    Crossref
  5. Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria, The ISME Journal, (2023).https://doi.org/10.1038/s41396-023-01385-1
    Crossref
  6. Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges, Renewable and Sustainable Energy Reviews, 172, (113012), (2023).https://doi.org/10.1016/j.rser.2022.113012
    Crossref
  7. Challenges and opportunities for third-generation ethanol production: A critical review, Engineering Microbiology, 3, 1, (100056), (2023).https://doi.org/10.1016/j.engmic.2022.100056
    Crossref
  8. Developments in seaweed biorefinery research: A comprehensive review, Chemical Engineering Journal, 454, (140177), (2023).https://doi.org/10.1016/j.cej.2022.140177
    Crossref
  9. Algae materials for advanced biofuel production through the cost-effective process and integration of nanocatalysts, Algae Materials, (29-62), (2023).https://doi.org/10.1016/B978-0-443-18816-9.00025-3
    Crossref
  10. Macroalgal polysaccharides: Biocatalysts in biofuel/bioenergy production, Polysaccharide-Degrading Biocatalysts, (227-273), (2023).https://doi.org/10.1016/B978-0-323-99986-1.00009-0
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media